All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 2.
- Views (last year): 29.
-
Дискретные модели популяционной динамики: достоинства, проблемы и обоснование
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 267-284Работа посвящена анализу достоинств, недостатков и обоснований применимости дискретных моделей в динамике популяций. Под дискретизацией в общем смысле понимается замена непрерывных величин их дискретными аналогами, то есть сведение задачи от непрерывных к перечислимым множествам. Рассмотрены прецеденты использования временной, пространственной и структурной дискретизации в типичных задачах математической экологии и совершена попытка оценить степень адекватности и границы применимости соответствующих моделей.
Ключевые слова: дискретные модели, дискретизация, уравнение Ферхюльста, динамика популяций, математическая экология, агентный подход.
Discrete Models in Population Dynamics: Advantages, Problems, and Justification
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 267-284Views (last year): 6. Citations: 6 (RSCI).This article is dedicated to applicability justification as well as advantages and disadvantages analysis of discrete models in population dynamics. Discretization is the process of transferring continuous functions, models, and equations into discrete counterparts. We consider how temporal, spatial and structural discretization can be applied for solving typical issues in mathematical ecology, and try to estimate corresponding models adequacy and applicability limitations.
-
Дискретная форма уравнений в теории переключающегося воспроизводства с различными вариантами финансовых потоков
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 803-815Разные варианты моделей переключающегося режима воспроизводства описывают совокупность взаимодействующих друг с другом макроэкономических производственных подсистем, каждой из которых соответствует свое домашнее хозяйство. Эти подсистемы различаются между собой по возрасту используемого ими основного капитала, поскольку они по очереди останавливают производство продукции для его обновления собственными силами (для ремонта оборудования и для привнесения инноваций, увеличивающих эффективность производства). Это принципиально отличает данный тип моделей от моделей, описывающих режим совместного воспроизводства, при котором обновление основного капитала и производство продукта происходят одновременно. Модели переключающегося режима воспроизводства позволяют наглядно описать механизмы таких явлений, как денежные кругообороты и амортизация, а также описывать различные виды монетарной политики, позволяют по-новому интерпретировать механизмы экономического роста. В отличие от многих других макроэкономических моделей модели этого класса, в которых конкурирующие между собой подсистемы поочередно приобретают преимущество над остальными за счет обновления, принципиально не равновесны. Изначально они были описаны в виде систем обыкновенных дифференциальных уравнений со скачкообразно меняющимися коэффициентами. В численных расчетах, проводившихся для этих систем, в зависимости от значений параметров и начальных условий была выявлена как регулярная, так и нерегулярная динамика. В данной работе показано, что простейшие варианты этой модели без использования дополнительных приближений могут быть представлены в дискретной форме (в виде нелинейных отображений) при различных вариантах (непрерывных и дискретных) финансовых потоков между подсистемами (интерпретируемых как зарплаты и субсидии). Эта форма представления более удобна для получения строгих аналитических результатов, а также для проведения более экономных и точных численных расчетов. В частности, ее использование позволило определить начальные условия, соответствующие скоординированному, устойчивому экономическому росту без систематического отставания в производительности одних подсистем от других.
Ключевые слова: основной капитал, амортизация, переключающийся режим воспроизводства, скоординированный экономический рост, дискретные отображения.
The discrete form of the equations in the theory of the shifting mode of reproduction with different variants of financial flows
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 803-815Views (last year): 1. Citations: 4 (RSCI).Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.
-
Гибридные модели в биомедицинских приложениях
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.
Hybrid models in biomedical applications
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309Views (last year): 25.The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.
-
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
Ключевые слова: многокритериальная оценка, риск, стратегия эксплуатации, динамика средних, стационарный режим цепи Маркова, облачные технологии, открытая интеграционная платформа.
System modeling, risks evaluation and optimization of a distributed computer system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.
The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.
Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"