All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Моделирование цитокинового шторма при респираторных вирусных инфекциях
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 619-645В данной работе мы разрабатываем модель иммунного ответа на респираторные вирусные инфекции с учетом некоторых особенностей инфекции SARS-CoV-2. Модель представляет из себя систему обыкновенных дифференциальных уравнений для концентраций эпителиальных клеток, иммунных клеток, вируса и воспалительных цитокинов. Анализ существования и устойчивости стационарных точек дополняется численным моделированием с целью изучения динамики решений. Поведение решений характеризуется большим ростом концентрации вируса, наблюдаемым для острых респираторных вирусных инфекций.
На первом этапе мы изучаем врожденный иммунный ответ, основанный на защитных свойствах интерферона, производимого инфицированными вирусом клетками. С другой стороны, вирусная инфекция подавляет выработку интерферона. Их конкуренция может привести к бистабильности системы с разными режимами развития инфекции с высокой или низкой интенсивностью. В случае острого протекания заболевания и существенного роста концентрации вируса инкубационный период и максимальная вирусная нагрузка зависят от исходной вирусной нагрузки и параметров иммунного ответа. В частности, увеличение исходной вирусной нагрузки приводит к сокращению инкубационного периода и увеличению максимальной вирусной нагрузки.
Для изучения возникновения и динамики цитокинового шторма в модель вводится уравнение для концентрации провоспалительных цитокинов, производимых клетками врожденного иммунного ответа. В зависимости от параметров система может оставаться в режиме с относительно низким уровнем провосполительных цитокинов, наблюдаемым для обычного протекания вирусных инфекций, или за счет положительной обратной связи между воспалением и иммунными клетками перейти в режим цитокинового шторма, характеризующегося избыточным производством провоспалительных цитокинов. При этом цитокиновый шторм, вызванный вирусной инфекцией, может продолжаться и после ее окончания. Кроме того, гибель клеток, инициируемая провосполительными цитокинами (апоптоз), может стимулировать переход к цитокиновому шторму. Однако апоптоз в отдельности от врожденного иммунного ответа не может инициировать или поддерживать протекание цитокинового шторма. Предположения модели и полученные результаты находятся в качественном согласии с экпериментальными и клиническими данными.
Modelling of cytokine storm in respiratory viral infections
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.
At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.
In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.
-
Бистабильность и затухающие колебания в гомогенной модели вирусной инфекции
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 111-124Развитие вирусной инфекции в организме представляет собой сложный процесс, зависящий от конкуренции между размножением вируса в клетках организма-хозяина и иммунным ответом. В данной работе для исследования различных режимов развития инфекции мы анализируем общую математическую модель иммунного ответа организма на вирусную инфекцию. Модель представляет собой систему из двух обыкновенных дифференциальных уравнений, описывающих изменение обезразмеренных концентраций вируса и иммунных клеток. Скорость пролиферации иммунных клеток представлена колоколообразной функцией концентрации вируса. Эта функция возрастает при малых концентрациях вируса, описывая антиген-стимулированную клональную экспансию иммунных клеток, и снижается при достаточно высоких концентрациях вируса, описывая подавление пролиферации иммунных клеток инфекцией. В зависимости от вирулентности вируса, силы иммунного ответа и начальной вирусной нагрузки, модель предсказывает несколько сценариев: (а) инфекция может быть полностью устранена, (б) она может оставаться на низком уровне при высокой концентрации иммунных клеток; (в) иммунная система может быть существенно истощена или (г) полностью истощена, что сопровождается (в, г) высокой концентрацией вируса. Анализ модели показывает, что концентрация вируса может колебаться по мере постепенного приближения к своему равновесному значению. Рассматриваемая модель может быть получена при редукции более общей модели — с дополнительным уравнением для общей вирусной нагрузки, в предположении, что общая вирусная нагрузка является быстрой переменной. В случае медленной кинетики общей вирусной нагрузки следует использовать указанную более общую модель.
Ключевые слова: динамика вирусной инфекции, иммунный ответ, бистабильность, затухающие колебания, математическое моделирование, качественный анализ систем обыкновенных дифференциальных уравнений.
Bistability and damped oscillations in the homogeneous model of viral infection
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 111-124The development of a viral infection in the organism is a complex process which depends on the competition race between virus replication in the host cells and the immune response. To study different regimes of infection progression, we analyze the general mathematical model of immune response to viral infection. The model consists of two ODEs for virus and immune cells non-dimensionalized concentrations. The proliferation rate of immune cells in the model is represented by a bell-shaped function of the virus concentration. This function increases for small virus concentrations describing the antigen-stimulated clonal expansion of immune cells, and decreases for sufficiently high virus concentrations describing down-regulation of immune cells proliferation by the infection. Depending on the virus virulence, strength of the immune response, and the initial viral load, the model predicts several scenarios: (a) infection can be completely eliminated, (b) it can remain at a low level while the concentration of immune cells is high; (c) immune cells can be essentially exhausted, or (d) completely exhausted, which is accompanied (c, d) by high virus concentration. The analysis of the model shows that virus concentration can oscillate as it gradually converges to its equilibrium value. We show that the considered model can be obtained by the reduction of a more general model with an additional equation for the total viral load provided that this equation is fast. In the case of slow kinetics of the total viral load, this more general model should be used.
-
Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.
Ключевые слова: главный комплекс гистосовместимости, аффинностьсв язывания, нейронная сеть, машинное обучение, модельП оттса.
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа.
Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.
Keywords: data processing, experiment, cytokine, immune system, pneumonia, statistics, approximation, Hausdorff distance.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"