All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.
Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.
Ключевые слова: вариационное неравенство, седловая задача, гладкость высокого порядка, тензорные методы, минимизация нормы градиента.
Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.
For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.
Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.
Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.
-
Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.
Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.
Ключевые слова: стохастическая оптимизация, выпуклая оптимизация, выпукло-вогнутая оптимизация, острый минимум, условие квадратичного роста.
Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.
The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.
-
Влияние нерыночного преимущества на равновесие в модели Хотеллинга
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 573-581В работе исследуется модификация модели Хотеллинга, в которой одна из фирм обладает нерыночным преимуществом, введенным по аналогии с валентностью, используемой в задачах политической экономии. Нерыночное (валентное) преимущество может интерпретироваться как реклама (узнаваемость фирмы). Установлено, что при аддитивной функции полезности потребителей, зависящей квадратично от расстояния до фирмы, существует единственное равновесие по Нэшу. Это равновесие значительно «богаче» равновесия в исходной модели Хотеллинга. В частности, дополнительное нерыночное преимущество может быть избыточным и его использование — неэффективным.
Impact of the non-market advantage on equilibrium in A Hotelling model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 573-581The principle of minimal differentiation, based on the Hotelling model, is well known in the economy. It is applicable to horizontal differentiated goods of almost any nature. The Hotelling approach to modeling competition of oligopolies corresponds to a modern description of monopolistic competition with increasing returns to scale and imperfect competition. We develop a modification of the Hotelling model that endows a firm with a non-market advantage, which is introduced alike the valence advantage known in problems of political economy. The nonmarket (valence) advantage can be interpreted as advertisement (brand awareness of firms). Problem statement. Consider two firms competing with prices and location. Homogeneous consumers vary with its location on a segment. They minimize their costs, which additively includes the price of the product and the distance from them to the product. The utility function is linear with respect to the price and quadratic with respect to the distance. It is also expected that one of the firms (for certainty, firm № 1) has a market advantage d. The consumers are assumed to take into account the sum of the distance to the product and the market advantage of firm 1. Thus, the strategy of the firms and the consumers depend on two parameters: the unit t of the transport costs and the non-market advantage d. I explore characteristics of the equilibrium in the model as a function of the non-market advantage for different fixed t. The aim of the research is to assess the impact of the non-market advantage on the equlibrium. We prove that the Nash equilibrium exists and it is unique under additive consumers' preferences de-pending on the square of the distance between consumers and firms. This equilibrium is ‘richer’ than that in the original Hotelling model. In particular, non-market advantage can be excessive and inefficient to use.
-
Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.
В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.
На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.
В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.
Ключевые слова: кибератаки, рыночная структура, нерыночные противодействия, олигополистические рынки, динамические игры.
Study of the dynamics of the structure of oligopolistic markets with non-market opposition parties
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 219-233The article examines the impact of non-market actions of participants in oligopolistic markets on the market structure. The following actions of one of the market participants aimed at increasing its market share are analyzed: 1) price manipulation; 2) blocking investments of stronger oligopolists; 3) destruction of produced products and capacities of competitors. Linear dynamic games with a quadratic criterion are used to model the strategies of oligopolists. The expediency of their use is due to the possibility of both an adequate description of the evolution of markets and the implementation of two mutually complementary approaches to determining the strategies of oligopolists: 1) based on the representation of models in the state space and the solution of generalized Riccati equations; 2) based on the application of operational calculus methods (in the frequency domain) which owns the visibility necessary for economic analysis.
The article shows the equivalence of approaches to solving the problem with maximin criteria of oligopolists in the state space and in the frequency domain. The results of calculations are considered in relation to a duopoly, with indicators close to one of the duopolies in the microelectronic industry of the world. The second duopolist is less effective from the standpoint of costs, though more mobile. Its goal is to increase its market share by implementing the non-market methods listed above.
Calculations carried out with help of the game model, made it possible to construct dependencies that characterize the relationship between the relative increase in production volumes over a 25-year period of weak and strong duopolists under price manipulation. Constructed dependencies show that an increase in the price for the accepted linear demand function leads to a very small increase in the production of a strong duopolist, but, simultaneously, to a significant increase in this indicator for a weak one.
Calculations carried out with use of the other variants of the model, show that blocking investments, as well as destroying the products of a strong duopolist, leads to more significant increase in the production of marketable products for a weak duopolist than to a decrease in this indicator for a strong one.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"