All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
-
Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.
Ключевые слова: фармакокинетическое моделирование, радиофармпрепарат, йод, фармакокинетика, радионуклидная диагностика, радионуклидная терапия.
Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.
-
Численное исследование модели Холстейна в разных термостатах
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.
Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.
В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.
Ключевые слова: квантово-классическаям одель, разрушение полярона, делокализованное состояние, термостат Ланжевена, гамильтонова система, термодинамические средние.
Numerical study of the Holstein model in different thermostats
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 489-502Based on the Holstein Hamiltonian, the dynamics of the charge introduced into the molecular chain of sites was modeled at different temperatures. In the calculation, the temperature of the chain is set by the initial data ¡ª random Gaussian distributions of velocities and site displacements. Various options for the initial charge density distribution are considered. Long-term calculations show that the system moves to fluctuations near a new equilibrium state. For the same initial velocities and displacements, the average kinetic energy, and, accordingly, the temperature of the T chain, varies depending on the initial distribution of the charge density: it decreases when a polaron is introduced into the chain, or increases if at the initial moment the electronic part of the energy is maximum. A comparison is made with the results obtained previously in the model with a Langevin thermostat. In both cases, the existence of a polaron is determined by the thermal energy of the entire chain.
According to the simulation results, the transition from the polaron mode to the delocalized state occurs in the same range of thermal energy values of a chain of $N$ sites ~ $NT$ for both thermostat options, with an additional adjustment: for the Hamiltonian system the temperature does not correspond to the initially set one, but is determined after long-term calculations from the average kinetic energy of the chain.
In the polaron region, the use of different methods for simulating temperature leads to a number of significant differences in the dynamics of the system. In the region of the delocalized state of charge, for high temperatures, the results averaged over a set of trajectories in a system with a random force and the results averaged over time for a Hamiltonian system are close, which does not contradict the ergodic hypothesis. From a practical point of view, for large temperatures T ≈ 300 K, when simulating charge transfer in homogeneous chains, any of these options for setting the thermostat can be used.
-
Описание процессов в ансамблях фотосинтетических реакционных центров с помощью кинетической модели типа Монте-Карло
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1207-1221Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.
В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.
Ключевые слова: кинетический метод Монте-Карло, фотосистема, электронный транспорт, кислород-выделяющий комплекс, пул пластохинонов, модель.
Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.
When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"