All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.
В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.
Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.
Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.
Linearly convergent gradient-free methods for minimization of parabolic approximation
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.
In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.
In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.
Experimental results confirm the efficiency and practical applicability of all the obtained methods.
-
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 709-728Работа посвящена численному моделированию плоской неизотермической нелинейной фильтрации в пористой среде. Рассматривается двумерная нестационарная задача течения высоковязкой нефти, воды и пара с фазовыми переходами. Нефтяная фаза представлена двумя псевдокомпонентами: легкой и тяжелой фракциями, которые, как и водный компонент, могут присутствовать в газовой фазе. Нефть проявляет вязкопластическую реологию, ее фильтрация не подчиняется классическому линейному закону Дарси. При моделировании учтена не только зависимость плотности и вязкости флюидов от температуры, но и улучшение реологических свойств нефти с ростом температуры.
Для численного решения задачи применен метод линий тока с расщеплением по физическим процессам, заключающийся в отделении конвективного переноса, направленного вдоль скорости фильтрации, от теплопроводности и гравитации. Предложен новый подход применения метода линий тока, позволяющий корректно моделировать задачи нелинейной фильтрации с реологией, зависящей от температуры. Суть этого алгоритма заключается в рассмотрении процесса интегрирования как совокупности квазиравновесных состояний, которые достигаются путем решения системы на глобальной сетке и между которыми решение проводится на сетке из линий тока. Использование метода линий тока позволяет не только ускорить расчеты фильтрации, но и получить физически достоверную картину решения, так как интегрирование системы происходит на сетке, совпадающей с направлением течения флюидов.
Помимо метода линий тока, в работе представлен алгоритм учета негладких коэффициентов, возникающих при решении уравнения течения вязкопластической нефти. Использование этого алгоритма позволяет сохранить достаточно большой шаг по времени и не изменяет физическую картину решения.
Полученные результаты сопоставлены с известными аналитическими решениями, а также с результатами, полученными при расчете в коммерческом пакете. Анализ проведенных тестовых расчетов на сходимость по количеству линий тока, а также на разных сетках на линиях тока обосновывает применимость предлагаемого алгоритма, а уменьшение времени расчета, по сравнению с традиционными методами, демонстрирует практическую значимость этого подхода.
Ключевые слова: расщепление по физическим процессам, метод линий тока, композиционное моделирование, нелинейная фильтрация.
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Views (last year): 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Экспериментальное сравнение алгоритмов поиска вектора PageRank
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
-
Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.
Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.
Ключевые слова: вариационное неравенство, седловая задача, гладкость высокого порядка, тензорные методы, минимизация нормы градиента.
Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.
For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.
Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.
Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.
-
Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.
Ключевые слова: относительная сильная выпуклость, относительная гладкость, относительный функциональный рост, относительное условие градиентного доминирования, адаптивный метод, рестарты.
Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
Ключевые слова: субградиентный метод, острый минимум, квазивыпуклая функция, слабо $\beta$-квазивыпуклая функция, липшицева функция, $\delta$-субградиент.
Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"