Результаты поиска по 'линейные уравнения':
Найдено статей: 101
  1. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  2. Ветлужский А.Ю.
    Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733

    Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.

    Vetluzhsky A.Y.
    Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733

    One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.

  3. Сидоренко Д.А., Уткин П.С.
    Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766

    В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.

    Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.

    Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  4. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  5. Литвинов В.Н., Чистяков А.Е., Никитина А.В., Атаян А.М., Кузнецова И.Ю.
    Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672

    Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.

    Litvinov V.N., Chistyakov A.E., Nikitina A.V., Atayan A.M., Kuznetsova I.Y.
    Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672

    The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.

  6. Минкевич И.Г.
    Неполные системы линейных уравнений с ограничениями на переменные
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 719-745

    Сформулирована задача описания объектов различной природы на основе системы линейных уравнений, в которой число неизвестных превосходит число уравнений. Важной особенностью такой задачи, существенно усложняющей ее решение, являются ограничения на значения ряда переменных. Примером такой задачи является выбор биохимических реакций, осуществляющих преобразование заданного субстрата (исходного вещества) в заданный продукт. В этом случае неизвестными являются скорости биохимических реакций, образующие искомый вектор решения. Компоненты этого вектора в описываемом подходе разделяются на две группы: 1) задаваемые, $\vec{y}$; 2) зависящие от задаваемых, $\vec{x}$. Изучены варианты конфигурации области допустимых значений $\vec{y}$, следующие из ограничений, наложенных на компоненты $\vec{x}$. Выявлено, что часть ограничений могут быть излишними и поэтому исключенными из рассмотрения, что упрощает решение задачи. Анализируются случаи, когда два или более ограничений на $\vec{x}$ приводят к появлению жестких связей между компонентами $\vec{y}$. Описаны методы поиска базисных решений, учитывающие особенности данной задачи. Постановка общей задачи и полученные решения проиллюстрированы биохимическим примером.

    Minkevich I.G.
    Incomplete systems of linear equations with restrictions of variable values
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 719-745

    The problem is formulated for description of objects having various natures which uses a system of linear equations with variable number exceeding the number of the equations. An important feature of this problem that substantially complicates its solving is the existing of restrictions imposed on a number of the variables. In particular, the choice of biochemical reaction aggregate that converts a preset substrate (a feedstock) into a preset product belongs to this kind of problems. In this case, unknown variables are the rates of biochemical reactions which form a vector to be determined. Components of this vector are subdivided into two groups: 1) the defined components, $\vec{y}$; 2) those dependent on the defined ones, $\vec{x}$. Possible configurations of the domain of $\vec{y}$ values permitted by restrictions imposed upon $\vec{x}$ components have been studied. It has been found that a part of restrictions may be superfluous and, therefore, unnecessary for the problem solving. Situations are analyzed when two or more $\vec{x}$ restrictions result in strict interconnections between $\vec{y}$ components. Methods of search of the basis solutions which take into account the peculiarities of this problem are described. Statement of the general problem and properties of its solutions are illustrated using a biochemical example.

    Views (last year): 24. Citations: 3 (RSCI).
  7. Тарасюк И.А., Кравчук А.С.
    Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953

    В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.

    В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.

    Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.

    Tarasyuk I.A., Kravchuk A.S.
    Estimation of natural frequencies of pure bending vibrations of composite nonlinearly elastic beams and circular plates
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 945-953

    In the paper, it is represented a linearization method for the stress-strain curves of nonlinearly deformable beams and circular plates in order to generalize the pure bending vibration equations. It is considered composite, on average isotropic prismatic beams of a constant rectangular cross-section and circular plates of a constant thickness made of nonlinearly elastic materials. The technique consists in determining the approximate Young’s moduli from the initial stress-strain state of beam and plate subjected to the action of the bending moment.

    The paper proposes two criteria for linearization: the equality of the specific potential energy of deformation and the minimization of the standard deviation in the state equation approximation. The method allows obtaining in the closed form the estimated value of the natural frequencies of layered and structurally heterogeneous, on average isotropic nonlinearly elastic beams and circular plates. This makes it possible to significantly reduce the resources in the vibration analysis and modeling of these structural elements. In addition, the paper shows that the proposed linearization criteria allow to estimate the natural frequencies with the same accuracy.

    Since in the general case even isotropic materials exhibit different resistance to tension and compression, it is considered the piecewise-linear Prandtl’s diagrams with proportionality limits and tangential Young’s moduli that differ under tension and compression as the stress-strain curves of the composite material components. As parameters of the stress-strain curve, it is considered the effective Voigt’s characteristics (under the hypothesis of strain homogeneity) for a longitudinally layered material structure; the effective Reuss’ characteristics (under the hypothesis of strain homogeneity) for a transversely layered beam and an axially laminated plate. In addition, the effective Young’s moduli and the proportionality limits, obtained by the author’s homogenization method, are given for a structurally heterogeneous, on average isotropic material. As an example, it is calculated the natural frequencies of two-phase beams depending on the component concentrations.

    Views (last year): 14.
  8. Голубев В.И., Хохлов Н.И.
    Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240

    Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.

    Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.

    В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.

    Golubev V.I., Khokhlov N.I.
    Estimation of anisotropy of seismic response from fractured geological objects
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 231-240

    Seismic survey process is the common method of prospecting and exploration of deposits: oil and natural gas. Invented at the beginning of the XX century, it has received significant development and is currently used by almost all service oil companies. Its main advantages are the acceptable cost of fieldwork (in comparison with drilling wells) and the accuracy of estimating the characteristics of the subsurface area. However, with the discovery of non-traditional deposits (for example, the Arctic shelf, the Bazhenov Formation), the task of improving existing and creating new seismic data processing technologies became important. Significant development in this direction is possible with the use of numerical simulation of the propagation of seismic waves in realistic models of the geological medium, since it is possible to specify an arbitrary internal structure of the medium with subsequent evaluation of the synthetic signal-response.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium containing fractured inclusions in the process of seismic exploration. The authors constructed a three-dimensional model of a layered massif containing a layer of fluid-saturated cracks, which makes it possible to estimate the signal-response when the structure of the inhomogeneous inclusion is varied. To describe physical processes, we use a system of equations for a linearly elastic body in partial derivatives of the second order, which is solved numerically by a grid-characteristic method on hexahedral grid. In this case, the crack planes are identified at the stage of constructing the grid, and further an additional correction is used to ensure a correct seismic response for the model parameters typical for geological media.

    In the paper, three-component area seismograms with a common explosion point were obtained. On their basis, the effect of the structure of a fractured medium on the anisotropy of the seismic response recorded on the day surface at a different distance from the source was estimated. It is established that the kinematic characteristics of the signal remain constant, while the dynamic characteristics for ordered and disordered models can differ by tens of percents.

    Views (last year): 11. Citations: 4 (RSCI).
  9. Иванов А.М., Хохлов Н.И.
    Параллельная реализация сеточно-характеристического метода в случае явного выделения контактных границ
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 667-678

    В работе рассматривается применение технологии Message Passing Interface (MPI) для распараллеливания программного алгоритма, основанного на сеточно-характеристическом методе, применительно к численному решению уравнения линейной теории упругости. Данный алгоритм позволяет численно моделировать распространение динамических волновых возмущений в твердых деформируемых телах. К такого рода задачам относится решение прямой задачи распространения сейсмических волн, что представляет интерес в сейсмике и геофизике. Во снове решателя лежит сеточно-характеристический метод. В работе предложен способ уменьшения времени взаимодействия между процессами MPI в течение расчета. Это необходимо для того, чтобы можно было производить моделирование в сложных постановках, при этом сохраняя высокую эффективность параллелизма даже при большом количестве процессов. Решение проблемы эффективного взаимодействия представляет большой интерес, когда в расчете используется несколько расчетных сеток с произвольной геометрией контактов между ними. Сложность данной задачи возрастает, если допускается независимое распределение узлов расчетных сеток между процессами. В работе сформулирован обобщенный подход для обработки контактных условий в терминах переинтерполяции узлов из заданного участка одной сетки в определенную область второй сетки. Предложен эффективный способ распараллеливания и установления эффективных межпроцессорных коммуникаций. Приведены результаты работы реализованного программного кода: получены волновые поля и сейсмограммы как для 2D-, так и для 3D-постановок. Показано, что данный алгоритм может быть реализован в том числе на криволинейных расчетных сетках. Рассмотренные постановки демонстрируют возможность проведения расчета с учетом топографии среды и криволинейных контактов между слоями. Это позволяет получать более точные результаты, чем при расчете только с использованием декартовых сеток. Полученная эффективность распараллеливания — практически 100% вплоть до 4096 процессов (за основу отсчета взята версия, запущенная на 128 процессах). Дале наблюдается ожидаемое постепенное снижение эффективности. Скорость спада не велика, на 16384 процессах удается сохранить 80%-ную эффективность.

    Ivanov A.M., Khokhlov N.I.
    Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 667-678

    We consider an application of the Message Passing Interface (MPI) technology for parallelization of the program code which solves equation of the linear elasticity theory. The solution of this equation describes the propagation of elastic waves in demormable rigid bodies. The solution of such direct problem of seismic wave propagation is of interest in seismics and geophysics. Our implementation of solver uses grid-characteristic method to make simulations. We consider technique to reduce time of communication between MPI processes during the simulation. This is important when it is necessary to conduct modeling in complex problem formulations, and still maintain the high level of parallelism effectiveness, even when thousands of processes are used. A solution of the problem of effective communication is extremely important when several computational grids with arbirtrary geometry of contacts between them are used in the calculation. The complexity of this task increases if an independent distribution of the grid nodes between processes is allowed. In this paper, a generalized approach is developed for processing contact conditions in terms of nodes reinterpolation from a given section of one grid to a certain area of the second grid. An efficient way of parallelization and establishing effective interprocess communications is proposed. For provided example problems we provide wave fileds and seismograms for both 2D and 3D formulations. It is shown that the algorithm can be realized both on Cartesian and on structured (curvilinear) computational grids. The considered statements demonstrate the possibility of carrying out calculations taking into account the surface topographies and curvilinear geometry of curvilinear contacts between the geological layers. Application of curvilinear grids allows to obtain more accurate results than when calculating only using Cartesian grids. The resulting parallelization efficiency is almost 100% up to 4096 processes (we used 128 processes as a basis to find efficiency). With number of processes larger than 4096, an expected gradual decrease in efficiency is observed. The rate of decline is not great, so at 16384 processes the parallelization efficiency remains at 80%.

    Views (last year): 18.
  10. Янбарисов Р.М.
    Параллельный метод вложенных дискретных трещин для моделирования течений в трещиноватых пористых средах
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 735-745

    В данной работе рассматривается параллельный метод решения задач однофазной фильтрации в трещиноватой пористой среде, основанный на представлении трещин вложенными в расчетную сетку поверхностями и называемый в литературе моделью (или методом) вложенных дискретных трещин. В рамках модели пористая среда и крупные трещины представляются в виде двух независимых континуумов. Отличительной особенностью рассматриваемого подхода является то, что расчетная сетка не перестраивается под положение трещин, при этом для каждой ячейки, пересекаемой трещиной, вводится дополнительная степень свободы. Дискретизация потоков между введенными континуумами трещин и пористой среды использует преднасчитанные характеристики пересечения поверхностей трещин с трехмерной расчетной сеткой. При этом дискретизация потоков внутри пористой среды не зависит от потоков между континуумами. Это позволяет интегрировать модель в уже существующие симуляторы многофазных течений в пористых коллекторах и при этом точно описывать поведение течений вблизи трещин.

    Ранее автором был предложен монотонный метод вложенных дискретных трещин, основанный на применении метода конечных объемов с нелинейными схемами дискретизации потоков внутри пористой среды: монотонной двухточечной схемы или компактной многоточечной схемы с дискретным принципом максимума. Было доказано, что дискретное решение полученной нелинейной задачи для системы «пористая среда + трещины» сохраняет неотрицательность или удовлетворяет дискретному принципу максимума в зависимости от выбора схемы дискретизации.

    Данная работа является продолжением предыдущих исследований. Предложенный метод был параллелизован с помощью программной платформы INMOST и протестирован. Были использованы такие возможности INMOST, как сбалансированное распределение сетки по процессорам, масштабируемые методы решения разреженных распределенных систем линейных уравнений и другие. Были проведены параллельные расчеты, демонстрирующие хорошую масштабируемость при увеличении числа процессоров.

    Yanbarisov R.M.
    Parallel embedded discrete fracture method for flows in fractured porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 735-745

    In this work, parallel method for solving single-phase flow problems in a fractured porous media is considered. Method is based on the representation of fractures by surfaces embedded into the computational mesh, and known as the embedded discrete fracture model. Porous medium and fractures are represented as two independent continua within the model framework. A distinctive feature of the considered approach is that fractures do not modify the computational grid, while an additional degree of freedom is introduced for each cell intersected by the fracture. Discretization of fluxes between fractures and porous medium continua uses the pre-calculated intersection characteristics of fracture surfaces with a three-dimensional computational grid. The discretization of fluxes inside a porous medium does not depend on flows between continua. This allows the model to be integrated into existing multiphase flow simulators in porous reservoirs, while accurately describing flow behaviour near fractures.

    Previously, the author proposed monotonic modifications of the model using nonlinear finite-volume schemes for the discretization of the fluxes inside the porous medium: a monotonic two-point scheme or a compact multi-point scheme with a discrete maximum principle. It was proved that the discrete solution of the obtained nonlinear problem preserves non-negativity or satisfies the discrete maximum principle, depending on the choice of the discretization scheme.

    This work is a continuation of previous studies. The previously proposed monotonic modification of the model was parallelized using the INMOST open-source software platform for parallel numerical modelling. We used such features of the INMOST as a balanced grid distribution among processors, scalable methods for solving sparse distributed systems of linear equations, and others. Parallel efficiency was demonstrated experimentally.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"