All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Численный анализ конвективно-радиационного теплопереноса в замкнутой воздушной полости с локальным источником энергии
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 383-396Проведено математическое моделирование естественной конвекции и теплового излучения в квадратной замкнутой воздушной полости с изотермическими вертикальными стенками при наличии локального источника энергии постоянной температуры. Математическая модель построена в безразмерных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска и с учетом диатермичности воздушной среды. Получены распределения изолиний функции тока и температуры в широком диапазоне изменения определяющих параметров: число Рэлея $10^3 \leqslant Ra \leqslant 10^6$, приведенная степень черноты ограждающих стенок $0\leqslant\varepsilon < 1$, отношение длины источника энергии к размеру полости $0.2\leqslant l/L\leqslant0.6$ и время $0\leqslantτ\leqslant 100$. Установлены корреляционные соотношения для интегрального коэффициента теплообмена в зависимости от $Ra$, $ε$ и $l/L$.
Ключевые слова: естественная конвекция, поверхностное излучение, локальный источник постоянной температуры, замкнутая полость, математическое моделирование.
Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396Views (last year): 1. Citations: 5 (RSCI).Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.
-
Влияние формы и размеров локального источника энергии на режимы конвективного теплопереноса в квадратной полости
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 271-280Проведен численный анализ влияния формы и размеров локального источника постоянной температуры на нестационарные режимы термогравитационной конвекции в квадратной полости с изотермическими вертикальными стенками. Рассматривался источник энергии прямоугольной, треугольной и трапециевидной формы. Краевая задача, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска, была реализована численно методом конечных разностей. Получены распределения изолиний функции тока и температуры, а также временные зависимости для среднего числа Нуссельта на поверхности источника энергии в широком диапазоне изменения определяющих параметров.
Ключевые слова: термогравитационная конвекция, локальный источник энергии прямоугольной, треугольной и трапециевидной формы, замкнутая квадратная полость, математическое моделирование.
Effect of shape and sizes of a local heat source on convective heat transfer in a square cavity
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 271-280Views (last year): 5. Citations: 7 (RSCI).Numerical analysis of the effects of the local heat source shape on transient natural convection in a square enclosure has been carried out. The local heat source has rectangular, triangular and trapezoidal shape. The boundary value problem formulated in the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation has been solved by means of finite difference method. Distributions of streamlines and isotherms and time dependences for the average Nusselt number along the heat source surface in a wide range of governing parameters have been obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"