All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Школы по математической биологии 1973–1992 гг.
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 411-422В кратком обзоре описаны тематика и выборочные доклады Школ по моделированию сложных биологических систем. Школы явились естественным развитием этого направления науки в нашей стране, местом коллективного мозгового штурма, вдохновляемого такими выдающимися фигурами современности, как А. А. Ляпунов, Н. В. Тимофеев-Ресовский, А. М. Молчанов. На школах в острой дискуссионной форме поднимались общие вопросы методологии математического моделирования в биологии и экологии, обсуждались фундаментальные принципы структурной организации и функции сложных биологических и экологических систем. Школы служили важным примером междисциплинарного взаимодействия ученых разных не только и не столько специальностей, сколько разных мироощущений, подходов и способов отодвигать границу непознанного. Что тем не менее объединяло математиков и биологов, участников школ, так это общее понимание плодотворности данного союза. Доклады, дискуссии, размышления, сохранившиеся в материалах Школ, не потеряли актуальность до сих пор и могут служить определенными ориентирами для современного поколения ученых.
Ключевые слова: математическое моделирование, сложные биологические системы, уровни организации биологических систем, биосфера, экологическое моделирование.
Schools on mathematical biology 1973–1992
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422Views (last year): 2.This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"