Результаты поиска по 'методика':
Найдено статей: 102
  1. Шпитонков М.И.
    Применение методики корреляционной адаптометрии в спортивных и медико-биологических исследованиях
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 345-354

    В работе излагаются подходы к математическому моделированию механизмов, лежащих в основе широко используемых в биологии и медицине методов корреляционной адаптометрии. Построение базируется на конструкциях, лежащих в основе описания структурированных биологических систем. Предполагается, что плотность распределения численности биологической популяции удовлетворяет уравнению Колмогорова–Фоккера–Планка. С использованием данной методики оценивается эффективность лечения больных с ожирением. Все пациенты, в зависимости от степени ожирения и характера сопутствующей патологии, были разделены на три группы. Показано уменьшение веса корреляционного графа, вычисленного на измеренных у пациентов показателях для трех групп пациентов, что характеризует эффективность проведенного лечения для всех исследуемых групп. Данная методика также была использована для оценки напряженности тренировочных нагрузок у гребцов академической гребли трех возрастных групп. Было показано, что с наибольшим напряжением работали спортсмены молодежной группы. Также с использованием методики корреляционной адаптометрии оценивается эффективность лечения заместительной гормональной терапии (ЗГТ) у женщин. Все пациентки, в зависимости от назначенного препарата, были разделены на четыре группы. При стандартном анализе динамики средних величин показателей было показано, что в ходе всего лечения наблюдалась нормализация средних показателей для всех групп пациенток. Однако с использованием методики корреляционной адаптометрии было получено, что в течение первых шести месяцев вес корреляционного графа снижался, а в течение вторых шести месяцев этот вес повышался для всех исследуемых групп. Это свидетельствует о чрезмерной продолжительности годового курса ЗГТ и целесообразности перехода к полугодовому курсу.

    Shpitonkov M.I.
    Application of correlation adaptometry technique to sports and biomedical research
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 345-354

    The paper outlines the approaches to mathematical modeling correlation adaptometry techniques widely used in biology and medicine. The analysis is based on models employed in descriptions of structured biological systems. It is assumed that the distribution density of the biological population numbers satisfies the equation of Kolmogorov-Fokker-Planck. Using this technique evaluated the effectiveness of treatment of patients with obesity. All patients depending on the obesity degree and the comorbidity nature were divided into three groups. Shows a decrease in weight of the correlation graph computed from the measured in the patients of the indicators that characterizes the effectiveness of the treatment for all studied groups. This technique was also used to assess the intensity of the training loads in academic rowing three age groups. It was shown that with the highest voltage worked with athletes for youth group. Also, using the technique of correlation adaptometry evaluated the effectiveness of the treatment of hormone replacement therapy in women. All the patients depending on the assigned drug were divided into four groups. In the standard analysis of the dynamics of mean values of indicators, it was shown that in the course of the treatment were observed normalization of the averages for all groups of patients. However, using the technique of correlation adaptometry it was found that during the first six months the weight of the correlation graph was decreasing and during the second six months the weight increased for all study groups. This indicates the excessive length of the annual course of hormone replacement therapy and the practicality of transition to a semiannual rate.

    Views (last year): 10.
  2. Калачин С.В.
    Нечеткое моделирование восприимчивости человека к паническим ситуациям
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218

    Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.

    В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.

    Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.

    Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.

    В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.

    Kalachin S.V.
    Fuzzy modeling of human susceptibility to panic situations
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 203-218

    The study of the mechanism for the development of mass panic in view of its extreme importance and social danger is an important scientific task. Available information about the mechanism of her development is based mainly on the work of psychologists and belongs to the category of inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of a person's susceptibility to panic situations. As a result of the study, an fuzzy model was developed, consisting of blocks: “Fuzzyfication”, where the degree of belonging of the values of the input parameters to fuzzy sets is calculated; “Inference” where, based on the degree of belonging of the input parameters, the resulting function of belonging of the output value to an odd model is calculated; “Defuzzyfication”, where using the center of gravity method, the only quantitative value of the output variable characterizing a person's susceptibility to panic situations is determined Since the real quantitative values for linguistic variables mental properties of a person are unknown, then to assess the quality of the developed model, without endangering people, it is not possible. Therefore, the quality of the results of fuzzy modeling was estimated by the calculated value of the determination coefficient R2, which showed that the developed fuzzy model belongs to the category of good quality models $(R^2 = 0.93)$, which confirms the legitimacy of the assumptions made during her development. In accordance with to the results of the simulation, human susceptibility to panic situations for sanguinics and cholerics can be attributed to “increased” (0.88), and for phlegmatics and melancholics — to “moderate” (0.38). This means that cholerics and sanguinics can become epicenters of panic and the initiators of stampede, and phlegmatics and melancholics — obstacles to evacuation routes. What should be taken into account when developing effective evacuation measures, the main task of which is to quickly and safely evacuate people from adverse conditions. In the approved methods, the calculation of normative values of safety parameters is based on simplified analytical models of human flow movement, because a large number of factors have to be taken into account, some of which are quantitatively uncertain. The obtained result in the form of quantitative estimates of a person's susceptibility to panic situations will increase the accuracy of calculations.

  3. Савчук О.С., Титов А.А., Стонякин Ф.С., Алкуса М.С.
    Адаптивные методы первого порядка для относительносильновыпуклых задач оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 445-472

    Настоящая статья посвящена некоторым адаптивным методам первого порядка для оптимизационных задач с относительно сильно выпуклыми функционалами. Недавно возникшее в оптимизации понятие относительной сильной выпуклости существенно расширяет класс выпуклых задач посредством замены в определении евклидовой нормы расстоянием в более общем смысле (точнее — расхождением или дивергенцией Брегмана). Важная особенность рассматриваемых в настоящей работе классов задач — обобщение стандартных требований к уровню гладкости целевых функционалов. Точнее говоря, рассматриваются относительно гладкие и относительно липшицевые целевые функционалы. Это может позволить применять рассматриваемую методику для решения многих прикладных задач, среди которых можно выделить задачу о нахождении общей точки системы эллипсоидов, а также задачу бинарной классификации с помощью метода опорных векторов. Если целевой функционал минимизационной задачи выпуклый, то условие относительной сильной выпуклости можно получить посредством регуляризации. В предлагаемой работе впервые предложены адаптивные методы градиентного типа для задач оптимизации с относительно сильно выпуклыми и относительно липшицевыми функционалами. Далее, в статье предложены универсальные методы для относительно сильно выпуклых задач оптимизации. Указанная методика основана на введении искусственной неточности в оптимизационную модель. Это позволило обосновать применимость предложенных методов на классе относительно гладких, так и на классе относительно липшицевых функционалов. При этом показано, как можно реализовать одновременно адаптивную настройку на значения параметров, соответствующих как гладкости задачи, так и введенной в оптимизационную модель искусственной неточности. Более того, показана оптимальность оценок сложности с точностью до умножения на константу для рассмотренных в работе универсальных методов градиентного типа для обоих классов относительно сильно выпуклых задач. Также в статье для задач выпуклого программирования с относительно липшицевыми функционалами обоснована возможность использования специальной схемы рестартов алгоритма зеркального спуска и доказана оптимальная оценка сложности такого алгоритма. Также приводятся результаты некоторых вычислительных экспериментов для сравнения работы предложенных в статье методов и анализируется целесообразность их применения.

    Savchuk O.S., Titov A.A., Stonyakin F.S., Alkousa M.S.
    Adaptive first-order methods for relatively strongly convex optimization problems
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 445-472

    The article is devoted to first-order adaptive methods for optimization problems with relatively strongly convex functionals. The concept of relatively strong convexity significantly extends the classical concept of convexity by replacing the Euclidean norm in the definition by the distance in a more general sense (more precisely, by Bregman’s divergence). An important feature of the considered classes of problems is the reduced requirements concerting the level of smoothness of objective functionals. More precisely, we consider relatively smooth and relatively Lipschitz-continuous objective functionals, which allows us to apply the proposed techniques for solving many applied problems, such as the intersection of the ellipsoids problem (IEP), the Support Vector Machine (SVM) for a binary classification problem, etc. If the objective functional is convex, the condition of relatively strong convexity can be satisfied using the problem regularization. In this work, we propose adaptive gradient-type methods for optimization problems with relatively strongly convex and relatively Lipschitzcontinuous functionals for the first time. Further, we propose universal methods for relatively strongly convex optimization problems. This technique is based on introducing an artificial inaccuracy into the optimization model, so the proposed methods can be applied both to the case of relatively smooth and relatively Lipschitz-continuous functionals. Additionally, we demonstrate the optimality of the proposed universal gradient-type methods up to the multiplication by a constant for both classes of relatively strongly convex problems. Also, we show how to apply the technique of restarts of the mirror descent algorithm to solve relatively Lipschitz-continuous optimization problems. Moreover, we prove the optimal estimate of the rate of convergence of such a technique. Also, we present the results of numerical experiments to compare the performance of the proposed methods.

  4. Федоров В.А., Холина Е.Г., Коваленко И.Б.
    Молекулярная динамика протофиламентов тубулина и влияние таксола на их изгибную деформацию
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 503-512

    Несмотря на широкое распространение и применение препаратов химиотерапии рака, остаются невыясненными молекулярные механизмы действия многих из них. Известно, что некоторые из этих препаратов, например таксол, оказывают влияние на динамику сборки микротрубочек и останавливают процесс клеточного деления в профазе-прометафазе. В последнее время появились новые пространственные структуры микротрубочек и отдельных олигомеров тубулина, связанных с различными регуляторными белками и препаратами химиотерапии рака. Однако знание пространственной структуры само по себе не дает информации о механизме действия препаратов.

    В работе был применен метод молекулярной динамики для исследования поведения связанных с таксолом олигомеров тубулина и использована разработанная нами ранее методика анализа конформационных изменений протофиламентов тубулина, основанная на вычислении модифицированных углов Эйлера. На новых структурах фрагментов микротрубочек было продемонстрировано, что протофиламенты тубулина изгибаются не в радиальном направлении, как предполагают многие исследователи, а под углом примерно 45 к радиальному направлению. Однако в присутствии таксола направление изгиба смещается ближе к радиальному направлению. Было выявлено отсутствие значимой разницы между средними значениями углов изгиба и скручивания на новых структурах тубулина при связывании с различными естественными регуляторными лигандами, гуанозинтрифосфатом и гуанозиндифосфатом. Было обнаружено, что угол изгиба внутри димера больше, чем угол междимерного изгиба во всех проанализированных траекториях. Это указывает на то, что основная доля энергии деформации запасается внутри димерных субъединиц тубулина, а не на междимерном интерфейсе. Анализ недавно опубликованных структур тубулина указал на то, что присутствие таксола в кармане бета-субъединицы тубулина аллостерически уменьшает жесткость олигомера тубулина на скручивание, что могло бы объяснить основной механизм воздействия таксола на динамику микротрубочек. Действительно, снижение крутильной жесткости дает возможность сохранить латеральные связи между протофиламентами, а значит, должно приводить к стабилизации микротрубочек, что и наблюдается в экспериментах. Результаты работы позволяют пролить свет на феномен динамической нестабильности микротрубочек и приблизиться к пониманию молекулярных механизмов клеточного деления.

    Fedorov V.A., Kholina E.G., Kovalenko I.B.
    Molecular dynamics of tubulin protofilaments and the effect of taxol on their bending deformation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 503-512

    Despite the widespread use of cancer chemotherapy drugs, the molecular mechanisms of action of many of them remain unclear. Some of these drugs, such as taxol, are known to affect the dynamics of microtubule assembly and stop the process of cell division in prophase-prometaphase. Recently, new spatial structures of microtubules and individual tubulin oligomers have emerged associated with various regulatory proteins and cancer chemotherapy drugs. However, knowledge of the spatial structure in itself does not provide information about the mechanism of action of drugs.

    In this work, we applied the molecular dynamics method to study the behavior of taxol-bound tubulin oligomers and used our previously developed method for analyzing the conformation of tubulin protofilaments, based on the calculation of modified Euler angles. Recent structures of microtubule fragments have demonstrated that tubulin protofilaments bend not in the radial direction, as many researchers assume, but at an angle of approximately 45◦ from the radial direction. However, in the presence of taxol, the bending direction shifts closer to the radial direction. There was no significant difference between the mean bending and torsion angles of the studied tubulin structures when bound to the various natural regulatory ligands, guanosine triphosphate and guanosine diphosphate. The intra-dimer bending angle was found to be greater than the interdimer bending angle in all analyzed trajectories. This indicates that the bulk of the deformation energy is stored within the dimeric tubulin subunits and not between them. Analysis of the structures of the latest generation of tubulins indicated that the presence of taxol in the tubulin beta subunit pocket allosterically reduces the torsional rigidity of the tubulin oligomer, which could explain the underlying mechanism of taxol’s effect on microtubule dynamics. Indeed, a decrease in torsional rigidity makes it possible to maintain lateral connections between protofilaments, and therefore should lead to the stabilization of microtubules, which is what is observed in experiments. The results of the work shed light on the phenomenon of dynamic instability of microtubules and allow to come closer to understanding the molecular mechanisms of cell division.

  5. Аблаев С.С., Макаренко Д.В., Стонякин Ф.С., Алкуса М.С., Баран И.В.
    Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495

    Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.

    Ablaev S.S., Makarenko D.V., Stonyakin F.S., Alkousa M.S., Baran I.V.
    Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495

    Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.

  6. Кетова К.В., Касаткина Е.В.
    Решение логистической задачи топливоснабжения распределенной региональной системы теплоснабжения
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 451-470

    Предложена методика решения задачи логистики топливоснабжения региона, включающая в себя взаимосвязанные задачи маршрутизации, кластеризации, оптимального распределения ресурсов и управления запасами. Расчеты проведены на примере системы топливоснабжения Удмуртской Республики.

    Ketova K.V., Kasatkina E.V.
    The solution of the logistics task of fuel supply for the regional distributed heat supply system
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 451-470

    The technique for solving the logistic task of fuel supply in the region, including the interconnected tasks of routing, clustering, optimal distribution of resources and stock control is proposed. The calculations have been carried out on the example of fuel supply system of the Udmurt Republic.

    Views (last year): 1. Citations: 6 (RSCI).
  7. Дмитриенко П.В.
    Методика оценки эффективности систем мониторинга вычислительных ресурсов
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 661-668

    В данной статье рассмотрен вклад, вносимый системой мониторинга вычислительных ресурсов в работу распределенной вычислительной системы, и предложена методика оценки этого вклада и эффективности работы системы мониторинга на основе меры определенности состояния подконтрольной системы. Рассмотрено применение этой методики в ходе разработки и развития системы локального мониторинга Центрального информационно-вычислительного комплекса Объединенного института ядерных исследований.

    Dmitrienko P.V.
    Methods of evaluating the effectiveness of systems for computing resources monitoring
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 661-668

    This article discusses the contribution of computing resources monitoring system to the work of a distributed computing system. Method of evaluation of this contribution and performance monitoring system based on measures of certainty the state-controlled system is proposed. The application of this methodology in the design and development of local monitoring of the Central Information and Computing Complex, Joint Institute for Nuclear Research is listed.

    Views (last year): 2. Citations: 2 (RSCI).
  8. Шовин В.А.
    Конфирматорная факторная модель артериальной гипертензии
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 885-894

    Предлагается новая методика построения ортогональной факторной модели на основе метода корреляционных плеяд и конфирматорного факторного анализа. Предложен новый алгоритм конфирматорного факторного анализа. На основе оригинальной методики построена факторная модель артериальной гипертензии первой стадии. Проведен анализ корреляционных зависимостей и показателей артериальной гипертензии.

    Shovin V.A.
    Confirmatory factor model of hypertension
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 885-894

    A new method of constructing orthogonal factor model based on the method of correlation pleiades and confirmatory factor analysis. A new algorithm for confirmatory factor analysis. Based on an original method built factor model of hypertension the first stage. The analysis of correlations and indices of arterial hypertension.

    Views (last year): 2. Citations: 7 (RSCI).
  9. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

    Melnikova I.V., Bovkun V.A.
    Connection between discrete financial models and continuous models with Wiener and Poisson processes
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795

    The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.

    • In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.

    • In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.

    • The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.

    • The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.

  10. В работе приводятся результаты применения схемы очень высокой точности и разрешающей способности для получения численных решений уравнений Навье – Стокса сжимаемого газа, описывающих возникновение и развитие неустойчивости двумерного ламинарного пограничного слоя на плоской пластине. Особенностью проведенных исследований является отсутствие обычно используемых искусственных возбудителей неустойчивости при реализации прямого численного моделирования. Используемая мультиоператорная схема позволила наблюдать тонкие эффекты рождения неустойчивых мод и сложный характер их развития, вызванные предположительно ее малыми погрешностями аппроксимации. Приводится краткое описание конструкции схемы и ее основных свойств. Описываются постановка задачи и способ получения начальных данных, позволяющий достаточно быстро наблюдать установившийся нестационарный режим. Приводится методика, позволяющая обнаруживать колебания скорости с амплитудами, на много порядков меньшими ее средних значений. Представлена зависящая от времени картина возникновения пакетов волн Толмина – Шлихтинга с меняющейся интенсивностью в окрестности передней кромки пластины и их распространения вниз по потоку. Представленные амплитудные спектры с расширяющимися пиковыми значениями в нижних по течению областях указывают на возбуждение новых неустойчивых мод, отличных от возникающих в окрестности передней кромки. Анализ эволюции волн неустойчивости во времени и пространстве показал согласие с основными выводами линейной теории. Полученные численные решения, по-видимому, впервые описывают полный сценарий возможного развития неустойчивости Толмина – Шлихтинга, которая часто играет существенную роль на начальной стадии ламинарно-турбулентного перехода. Они открывают возможности полномасштабного численного моделирования этого крайне важного для практики процесса при аналогичном изучении пространственного пограничного слоя.

    The paper presents the results of applying a scheme of very high accuracy and resolution to obtain numerical solutions of the Navier – Stokes equations of a compressible gas describing the occurrence and development of instability of a two-dimensional laminar boundary layer on a flat plate. The peculiarity of the conducted studies is the absence of commonly used artificial exciters of instability in the implementation of direct numerical modeling. The multioperator scheme used made it possible to observe the subtle effects of the birth of unstable modes and the complex nature of their development caused presumably by its small approximation errors. A brief description of the scheme design and its main properties is given. The formulation of the problem and the method of obtaining initial data are described, which makes it possible to observe the established non-stationary regime fairly quickly. A technique is given that allows detecting flow fluctuations with amplitudes many orders of magnitude smaller than its average values. A time-dependent picture of the appearance of packets of Tollmien – Schlichting waves with varying intensity in the vicinity of the leading edge of the plate and their downstream propagation is presented. The presented amplitude spectra with expanding peak values in the downstream regions indicate the excitation of new unstable modes other than those occurring in the vicinity of the leading edge. The analysis of the evolution of instability waves in time and space showed agreement with the main conclusions of the linear theory. The numerical solutions obtained seem to describe for the first time the complete scenario of the possible development of Tollmien – Schlichting instability, which often plays an essential role at the initial stage of the laminar-turbulent transition. They open up the possibilities of full-scale numerical modeling of this process, which is extremely important for practice, with a similar study of the spatial boundary layer.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"