Результаты поиска по 'методы':
Найдено статей: 664
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 139-142
    Views (last year): 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 357-359
    Views (last year): 3.
  3. Гайко В.А.
    Глобальный бифуркационный анализ рациональной системы Холлинга
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545

    В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.

    Gaiko V.A.
    Global bifurcation analysis of a rational Holling system
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545

    In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.

    Views (last year): 11.
  4. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 853-855
    Views (last year): 6.
  5. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 3-5
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 3-5
    Views (last year): 10.
  6. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 163-164
    Views (last year): 6.
  7. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 279-283
    Views (last year): 18.
  8. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 379-381
    Views (last year): 36.
  9. Лобанов А.И.
    Научные и педагогические школы Александра Сергеевича Холодова
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579

    В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.

    За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.

    На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).

    В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.

    Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.

    Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Views (last year): 42.
  10. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 733-735
    Views (last year): 20.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"