Результаты поиска по 'метод аналогий':
Найдено статей: 45
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 209-212
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 673-675
    Views (last year): 1.
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 229-233
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1217-1219
  7. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 485-489
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  9. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  10. Сорокин П.Н.
    Оценка модуля аналога тригонометрической суммы Г. Вейля в кольце гауссовых чисел
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 343-347

    В работе рассматривается кольцо гауссовых чисел. Методами аналитической теории чисел доказывается оценка модуля некоторого аналога тригонометрической суммы Г. Вейля с суммированием по гауссовым числам, мультипликативная норма которых меньше целого числа.

    Sorokin P.N.
    Estimate of the module of analogue Weyl’s trigonometrical sum in ring of Gaussian numbers
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 343-347

    The ring of Gaussian numbers is considered. The estimation of the module of some analogue of Weyl's trigonometrical sum with summation on Gaussian numbers is proved by methods of the analytical number theory. Multiplicative norm of Gaussian numbers is less than some integer.

Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"