All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Квазиклассическое приближение для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 205-219Для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова в классе траекторно-сосредоточенных функций построены квазиклассические асимптотики с точностью $O(D^{N/2})$, $N\geqslant3$. С помощью операторов симметрии получен счетный набор асимптотических решений исходного уравнения с точностью $O(D^{3/2})$. В явном виде построены асимптотические решения двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, система Эйнштейна–Эренфеста.
Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219Views (last year): 4.Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
form. - Views (last year): 36.
- Views (last year): 4.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"