Результаты поиска по 'моделирование методом Монте-Карло':
Найдено статей: 19
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 209-212
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 379-381
    Views (last year): 36.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 5-7
    Views (last year): 27.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 939-942
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 5-8
  7. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1415-1418
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  9. Плохотников К.Э.
    Об устойчивости гравитационной системы многих тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511

    В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.

    Plokhotnikov K.E.
    On the stability of the gravitational system of many bodies
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511

    In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.

  10. Зинченко Д.А., Никонов Э.Г., Зинченко А.И.
    Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 87-94

    В настоящее время в ОИЯИ (Дубна) осуществляется строительство ускорительного комплекса NICA для проведения экспериментов по изучению взаимодействий релятивистских ядер и поляризованных частиц (протонов и дейтронов). Одна из создаваемых экспериментальных установок MPD (MultiPurpose Detector) рассчитана на изучение ядро-ядерных, протон-ядерных и протон-протонных взаимодействий. В связи с планами развития установки MPD рассматривается возможность создания внутреннего трекера с использованием кремниевых пиксельных детекторов нового поколения. Предполагается, что такой детектор позволит значительно повысить исследовательский потенциал эксперимента как для ядро-ядерных (за счет высокого пространственного разрешения вблизи области пересечения пучков), так и для протон-протонных (за счет высокого быстродействия) взаимодействий.

    В представленной работе изучаются основные характеристики такого трекера с использованием данных по протон-протонным взаимодействиям, полученных с помощью моделирования методом Монте-Карло. В частности, оцениваются возможности детектора по восстановлению вершин распада короткоживущих частиц и по выделению редких событий таких распадов среди продуктов гораздо более вероятных «обычных» взаимодействий. Также затрагивается проблема разделения вершин взаимодействий для восстановления наложенных событий при высокой светимости ускорителя и способность детектора проводить быструю селекцию редких событий (триггер). Полученные результаты могут быть использованы для обоснования необходимости создания данного детектора и развития системы триггера высокого уровня, основанного в том числе на методах машинного обучения.

    Zinchenko D.A., Nikonov E.G., Zinchenko A.I.
    A Monte-Carlo study of the inner tracking system main characteristics for multi purpose particle detector MPD
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 87-94

    At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons). One of the experimental facilitues MPD (MultiPurpose Detector) was designed to investigate nucleus-nucleus, protonnucleus and proton-proton interactions. The existing plans of future MPD upgrade consider a possibility to install an inner tracker made of the new generation silicon pixel sensors. It is expected that such a detector will considerably enhance the research capability of the experiment both for nucleus-nucleus interactions (due to a high spatial resolution near the collision region) and proton-proton ones (due to a fast detector response).

    This paper presents main characteristics of such a tracker, obtained using a Monte-Carlo simulation of the detector for proton-proton collisions. In particular, the detector ability to reconstruct decay vertices of short-lived particles and perform a selection of rare events of such decays from much more frequent “common” interactions are evaluated. Also, the problem of a separation of multiple collisions during the high luminosity accelerator running and the task of detector triggering on rare events are addressed. The results obtained can be used to justify the necessity to build such a detector and to develop a high-level trigger system, possibly based on machine learning techniques.

    Views (last year): 28.
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"