All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Приближенная модель плоских статических задач нелинейной упругости
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 889-896Работа посвящена построению приближенной математической модели нелинейной теории упругости для плоской деформации. В качестве метода, реализующего символьные вычисления, применяется метод эффектов третьего порядка. Предложенная модель позволяет использовать методы линейной теории упругости для решения конкретных задач. Данный метод является пригодным для автоматического получения аналитических решений плоских задач нелинейной теории упругости о концентрации напряжений около отверстий на базе математического пакета Maple. На примере треугольного контура исследован нелинейный эффект зависимости коэффициента концентрации напряжений от уровня внешней нагрузки.
Ключевые слова: нелинейная теория упругости, эффекты третьего порядка, приближенная математическая модель, коэффициент концентрации напряжений.
The approximate model of plane static problems of the nonlinear elasticity theory
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 889-896Views (last year): 4. Citations: 2 (RSCI).This article is dedicated to the construction of the approximate mathematical model of the nonlinear elasticity theory for plane strain state. The third order effects method applied to symbolic computing. There three boundary value problems for the first, the second and the third order effects has been obtained within this method, which gets ability to use well-elaborated methods of the linear elasticity theory for the solution of specific problems. This method can be applied for analytical solving of plane problems of nonlinear elasticity theory of stress concentration around holes in mathematical package Maple. Considered example of the triangular hole. The influence of external loads on the stress concentration factor.
-
Моделирование одномерных нелинейных пульсовых волн в эластичных сосудах на основе решеточных уравнений Больцмана
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 707-722В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.
В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.
В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.
The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722Views (last year): 2.In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.
In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.
Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.
-
Концентрация мощных акустических пучков в вязкоупругом материале с неоднородным распределением воздушных полостей
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 517-533Известно, что скорость звука в средах, содержащих сильно сжимаемые включения, например воздушные поры в упругой среде или газовые пузырьки в жидкости, может существенно уменьшиться по сравнению с однородной средой. Эффективный нелинейный параметр такой среды, описывающий проявление нелинейных эффектов, возрастает в сотни и тысячи раз из-за большого различия сжимаемости включений и окружающей среды. Пространственное изменение концентрации таких включений приводит к переменной локальной скорости звука, что, в свою очередь, вызывает пространственно-временное перераспределение акустической энергии в волне и искажению ее временных профилей и поперечной структуры ограниченных пучков. В частности, могут образовываться области фокусировок. При определенных условиях возможно формирование звукового канала, обеспечивающего волноводное распространение акустических сигналов в среде с подобными включениями. Таким образом, возможно управление пространственно-временной структурой акустических волн с помощью введения сильно сжимаемых включений с заданным пространственным распределением и концентрацией. Целью работы является исследование распространения акустических волн в резиноподобном материале с неоднородным пространственным распределением воздушных полостей. Основной задачей является развитие адекватной теории таких структурно-неоднородных сред, теории распространения нелинейных акустических волн и пучков в этих средах, расчет акустических полей и выявление связи параметров среды и включений с характеристиками распространяющихся волн. В работе выведено эволюционное самосогласованное уравнение с интегро-дифференциальным членом, описывающее в низкочастотном приближении распространение интенсивных акустических пучков в среде с сильно сжимаемым полостями. В этом уравнении учтено вторичное акустическое поле, вызванное динамикой колебаний полостей. Развит метод, позволяющий получить точные аналитические решения для поля нелинейного акустического пучка на его оси и правильно рассчитать поле в фокальных областях. Полученные результаты применены для теоретического моделирования материала с неоднородным распределением сильно сжимаемых включений.
The concentration of powerful acoustic beams in a viscoelastic medium with non-uniform distribution of the air cavities
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 517-533Views (last year): 6.It is known that the sound speed in medium that contain highly compressible inclusions, e.g. air pores in an elastic medium or gas bubbles in the liquid may be significantly reduced compared to a homogeneous medium. Effective nonlinear parameter of medium, describing the manifestation of nonlinear effects, increases hundreds and thousands of times because of the large differences in the compressibility of the inclusions and the medium. Spatial change in the concentration of such inclusions leads to the variable local sound speed, which in turn calls the spatial-temporal redistribution of acoustic energy in the wave and the distortion of its temporal profiles and cross-section structure of bounded beams. In particular, focal areas can form. Under certain conditions, the sound channel is formed that provides waveguide propagation of acoustic signals in the medium with similar inclusions. Thus, it is possible to control spatial-temporal structure of acoustic waves with the introduction of highly compressible inclusions with a given spatial distribution and concentration. The aim of this work is to study the propagation of acoustic waves in a rubberlike material with non-uniform spatial air cavities. The main objective is the development of an adequate theory of such structurally inhomogeneous media, theory of propagation of nonlinear acoustic waves and beams in these media, the calculation of the acoustic fields and identify the communication parameters of the medium and inclusions with characteristics of propagating waves. In the work the evolutionary self-consistent equation with integro-differential term is obtained describing in the low-frequency approximation propagation of intense acoustic beams in a medium with highly compressible cavities. In this equation the secondary acoustic field is taken into account caused by the dynamics of the cavities oscillations. The method is developed to obtain exact analytical solutions for nonlinear acoustic field of the beam on its axis and to calculate the field in the focal areas. The obtained results are applied to theoretical modeling of a material with non-uniform distribution of strongly compressible inclusions.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"