All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
Ключевые слова: WENO-схемы, нелинейные схемы, устойчивость численных схем, системы уравнений гиперболического типа, уравнение Хопфа.
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
- Views (last year): 16.
-
Периодическая задача для уравнения Хилла в случае параметрического резонанса
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.
Ключевые слова: нелинейная неавтономная периодическая краевая задача, уравнение типа Хилла, случай параметрического резонанса, метод простых итераций.
Periodic boudary-value problem for Hill's equation in the case of parametric resonance
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 27-43Views (last year): 1.Necessary and sufficient conditions for the existence of solutions of nonlinear nonautonomous periodic problem for Hill’s equation in the case of parametric resonance. A characteristic feature of the task is the need of finding, as desired solution, and the corresponding eigenfunction, which ensures solvability of the periodic problem for Hill’s equation in the case of parametric resonance. To construct solutions of the periodic problem for Hill’s equation and the corresponding eigenfunction in the case of parametric resonance proposed iterative scheme, based on the method of simple iterations with used list-square technics.
-
Нелинейная матричная краевая задача в случае параметрического резонанса
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 821-833Найдены необходимые и достаточные условия существования решений нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. Построена сходящаяся итерационная схема для нахождения приближений к решению нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. В качестве примера применения построенной итерационной схемы найдены приближения к решениями периодической краевой задачи для уравнения типа Риккати с параметрическим возмущением. Для контроля точности найденных приближений к решениямперио дической краевой задачи для уравнения типа Риккати использованы невязки этих приближений.
Ключевые слова: нелинейная нетерова краевая задача, матричные дифференциальные уравнения, обобщенный оператор Грина, параметрический резонанс.
Nonlinear boudary value problem in the case of parametric resonance
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 821-833Views (last year): 2.We construct necessary and sufficient conditions for the existence of solution of seminonlinear matrix boundary value problem for a parametric excitation system of ordinary differential equations. The convergent iteration algorithms for the construction of the solutions of the semi-nonlinear matrix boundary value problem for a parametric excitation system differential equations in the critical case have been found. Using the convergent iteration algorithms we expand solution of seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation in the neighborhood of the generating solution. Estimates for the value of residual of the solutions of the seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation are found.
-
Численное решение нелинейныхинтегра льных уравнений второго рода типа Урысона методом последовательныхквадра тур с использованием погруженной схемы Дормана–Принса 5(4)
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 275-300Представлен итерационный алгоритм, который численно решает нелинейные одномерные несингулярные интегральные уравнения Фредгольма и Вольтерры второго рода типа Урысона. Показано, что метод последовательных приближений Пикара может быть использован при численном решении такого типа уравнений. Сходимость числовой схемы гарантируется теоремами о неподвижной точке. При этом квадратурный алгоритм основан на явной форме встроенного правила Рунге–Кутты пятого порядка с адаптивным контролем размера шага. Возможность контроля локальных ошибок квадратур позволяет создавать очень точные автоматические числовые схемы и значительно уменьшить основной недостаток итераций Пикара, а именно чрезвычайно большое количество вычислений с увеличением глубины рекурсии. Наш алгоритм организован так, что по сравнению с большинством подходов нелинейность интегральных уравнений не вызывает каких-либо дополнительных вычислительных трудностей, его очень просто применять и реализовывать в программе. Наш алгоритм демонстрирует практически важные черты универсальности. Во-первых, следует подчеркнуть, что метод столь же прост в применении к нелинейным, как и к линейным уравнениям типа Фредгольма и Вольтерры. Во-вторых, алгоритм снабжен правилами останова, по которым вычисления могут в значительной степени контролироваться автоматически. Представлен компактный C++-код описанного алгоритма. Реализация нашей программы является самодостаточной: она не требует никаких предварительных вычислений, никаких внешних функций и библиотек и не требует дополнительной памяти. Приведены числовые примеры, показывающие применимость, эффективность, надежность и точность предложенного подхода.
Ключевые слова: уравнения типа Фредгольма и Вольтерры, теорема о неподвижной точке, анализ погрешностей ошибок, итерационные методы, погруженный метод Рунге–Кутты пятого порядка, адаптивный контроль величины шага.
Numerical solution of Urysohn type nonlinear second kind integral equations by successive quadratures using embedded Dormand and Prince scheme 5(4)
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 275-300We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.
-
Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.
Ключевые слова: уравнение переноса, метод квазидиффузии, HOLO-алгоритмы решения уравнения переноса, диагонально-неявные методы Рунге – Кутты.
Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"