All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Академическая сеть как возбудимая среда
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 177-183В работе проведено моделирование распространения некой идеи в профессиональной виртуальной группе. Мы рассматриваем распространение возбуждения в неоднородной возбудимой среде высокой связности. Предполагается, что элементы сети образуют полный граф. Параметры элементов распределены по нормальному закону. Моделирование показало, что в зависимости от параметров в виртуальной группе интерес к идее может затухать или испытывать колебания. Наличие в сети постоянно возбужденного элемента достаточно высокой активности приводит к хаотизации — доля членов сообщества, активно интересующихся идеей, меняется нерегулярно.
Views (last year): 6.The paper simulated the spread of certain ideas in a professional virtual group. We consider the propagation of excitation in an inhomogeneous excitable medium of high connectivity. It is assumed that the network elements form a complete graph. Parameters of the elements are normally distributed. The simulation showed that interest in the idea can fade or fluctuate depending on the settings in the virtual group. The presence of a permanent excited element with relatively high activity leads to chaos — the fraction of members of the community actively interested in an idea varies irregularly.
-
Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.
Ключевые слова: модель Винера – Розенблюта, модель SIRS, клеточный автомат, безмасштабная сеть, возбудимая среда, моделирование распространения эпидемий, дифференциально-разностные уравнения.
Activity dynamics in virtual networks: an epidemic model vs an excitable medium model
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1485-1499Epidemic models are widely used to mimic social activity, such as spreading of rumors or panic. Simultaneously, models of excitable media are traditionally used to simulate the propagation of activity. Spreading of activity in the virtual community was simulated within two models: the SIRS epidemic model and the Wiener – Rosenblut model of the excitable media. We used network versions of these models. The network was assumed to be heterogeneous, namely, each element of the network has an individual set of characteristics, which corresponds to different psychological types of community members. The structure of a virtual network relies on an appropriate scale-free network. Modeling was carried out on scale-free networks with various values of the average degree of vertices. Additionally, a special case was considered, namely, a complete graph corresponding to a close professional group, when each member of the group interacts with each. Participants in a virtual community can be in one of three states: 1) potential readiness to accept certain information; 2) active interest to this information; 3) complete indifference to this information. These states correspond to the conditions that are usually used in epidemic models: 1) susceptible to infection, 2) infected, 3) refractory (immune or death due to disease). A comparison of the two models showed their similarity both at the level of main assumptions and at the level of possible modes. Distribution of activity over the network is similar to the spread of infectious diseases. It is shown that activity in virtual networks may experience fluctuations or decay.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"