All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Моделирование траекторий временных рядов с помощью уравнения Лиувилля
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.
Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.
Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.
Ключевые слова: нестационарный временной ряд, выборочная функция распределения, аппроксимация скорости, кинетическое уравнение, полугруппа.
Modeling time series trajectories using the Liouville equation
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 585-598This paper presents algorithm for modeling set of trajectories of non-stationary time series, based on a numerical scheme for approximating the sample density of the distribution function in a problem with fixed ends, when the initial distribution for a given number of steps transforms into a certain final distribution, so that at each step the semigroup property of solving the Liouville equation is satisfied. The model makes it possible to numerically construct evolving densities of distribution functions during random switching of states of the system generating the original time series.
The main problem is related to the fact that with the numerical implementation of the left-hand differential derivative in time, the solution becomes unstable, but such approach corresponds to the modeling of evolution. An integrative approach is used while choosing implicit stable schemes with “going into the future”, this does not match the semigroup property at each step. If, on the other hand, some real process is being modeled, in which goal-setting presumably takes place, then it is desirable to use schemes that generate a model of the transition process. Such model is used in the future in order to build a predictor of the disorder, which will allow you to determine exactly what state the process under study is going into, before the process really went into it. The model described in the article can be used as a tool for modeling real non-stationary time series.
Steps of the modeling scheme are described further. Fragments corresponding to certain states are selected from a given time series, for example, trends with specified slope angles and variances. Reference distributions of states are compiled from these fragments. Then the empirical distributions of the duration of the system’s stay in the specified states and the duration of the transition time from state to state are determined. In accordance with these empirical distributions, a probabilistic model of the disorder is constructed and the corresponding trajectories of the time series are modeled.
-
Метод построения прогнозной нейросетевой модели временного ряда
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.
Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.
Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.
В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.
Ключевые слова: временной ряд, прогнозирование, нейросетевая модель, персептрон, тренд, сезонность, стационарный ряд, нестационарный ряд, автокорреляционная функция, частная автокорреляционная функция, точность аппроксимации.
A method of constructing a predictive neural network model of a time series
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.
Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.
The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.
In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Views (last year): 12. Citations: 2 (RSCI). -
Об эволюции возмущений, вызванных движением метеороидов в атмосфере Земли
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 993-1030На основе МГД-уравнений рассмотрены нестационарные 2D- и 3D-задачи об эволюции возмущений в нижней атмосфере и в ионосфере Земли, вызываемыхдвиж ением по пологим траекториям входа крупных метеороидов с имитацией ихразр ушения путем мгновенного увеличения миделя в точке максимума скоростного напора. По результатам численного исследования получены и проанализированы детальные пространственно-временные распределения основныхпарамет ров плазменных течений, из которых, в частности, следует ряд явлений, сходных с наблюдавшимися в челябинском феномене.
Ключевые слова: атмосфера, ионосфера, численное моделирование, движение и разрушение метеороидов, эволюция возмущений.
About the Evolution of Perturbations Caused by the Movement of Meteoroids in the Earth’s Atmosphere
Computer Research and Modeling, 2013, v. 5, no. 6, pp. 993-1030Views (last year): 1. Citations: 1 (RSCI).On the basis of the MGD equations we consider 2D- and 3D- nonstationary problems about the evolution of perturbations in the lower atmosphere and the Earth’s ionosphere which are caused by the movement of large meteoroids along gently sloping paths of the entry with the simulation of their destruction by the momentary increase of the midship at the point of the pressure head maximum. According to the results of our numerical investigation we obtain and analyze the detailed spatial-temporal distributions of the main parameters of the plasma flows from which in particular a number of phenomena that are similar to those seen in the Chelyabinsk phenomenon follow.
-
Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Модель оперативного оптимального управления распределением финансовых ресурсов предприятия
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 343-358В статье проведен критический анализ существующих методов и моделей, предназначенных для решения задачи планирования распределения финансовых ресурсов в цикле оперативного управления предприятием. Выявлен ряд существенных недостатков представленных моделей, ограничивающих сферу их применения: статический характер моделей, не учитывается вероятностный характер финансовых потоков, не выявляются существенно влияющие на платежеспособность и ликвидность предприятия ежедневные суммы остатков дебиторской и кредиторской задолженности. Это обуславливает необходи- мость разработки новой модели, отражающей существенные свойства системы планирования финансо- вых потоков — стохастичность, динамичность, нестационарность. Назначением такой модели является информационная поддержка принимаемых решений при формировании плана расходования финансовых ресурсов по критериям экономической эффективности.
Разработана модель распределения финансовых потоков, основанная на принципах оптимального динамического управления и методе динамического программирования, обеспечивающая планирование распределения финансовых ресурсов с учетом достижения достаточного уровня ликвидности и платежеспособности предприятия в условиях неопределенности исходных данных. Предложена алгоритмическая схема формирования целевого остатка денежных средств на принципах обеспечения финансовой устойчивости предприятия в условиях изменяющихся финансовых ограничений.
Особенностью предложенной модели является представление процесса распределения денежных средств в виде дискретного динамического процесса, для которого определяется план распределения финансовых ресурсов, обеспечивающий экстремум критерия эффективности. Формирование такого плана основано на согласовании платежей (финансовых оттоков) с их поступлениями (финансовыми притоками). Такой подход позволяет синтезировать разные планы, отличающиеся разным сочетанием финансовых оттоков, а затем осуществлять поиск наилучшего по заданному критерию. В качестве критерия эффективности приняты минимальные суммарные затраты, связанные с уплатой штрафов за несвоевременное финансирование расходных статей. Ограничениями в модели являются требование обеспечения минимально допустимой величины остатков накопленных денежных средств по подпериодам планового периода, а также обязательность осуществления платежей в течение планового периода с учетом сроков погашения этих платежей. Модель позволяет с высокой степенью эффективности решать задачу планирования распределения финансовых ресурсов в условиях неопределенности сроков и объемов их поступления, согласования притоков и оттоков финансовых ресурсов. Практическая значимость модели состоит в возможности улучшить качество финансового планирования, повысить эффективность управления и операционную эффективность предприятия.
Ключевые слова: оперативный финансовый план, финансовые потоки, согласованное управление, дискретное оптимальное управление, метод динамического программирования, минимизация рисков.
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Views (last year): 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
Двуслойные интервальные взвешенные графы в оценке рыночных рисков
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 159-166Данная работа посвящена применению двуслойных интервальных взвешенных графов в прогнозировании нестационарных временных рядов и оценке по полученным прогнозам рыночных рисков. Первый слой графа с интервальными вершинами, формируемый во время первичного обучения системы, отображает все возможные флуктуации системы в отрезке времени, в котором обучали систему. Интервальные вершины второго слоя графа (надстройка над графом первого слоя), отображающие степень ошибки моделируемых значений временного ряда, соединены ребрами с вершинами графа первого слоя. Предложенная модель апробирована на получении 90-дневного прогноза цен на стальные биллеты. Средняя ошибка прогноза составила 2,6 %, что меньше средней ошибки авторегрессионных прогнозов.
Ключевые слова: рыночные риски, прогнозирование, нестационарные временные ряды, двуслойные интервальные взвешенные графы.
Double layer interval weighted graphs in assessing the market risks
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 159-166Views (last year): 2. Citations: 1 (RSCI).This scientific work is dedicated to applying of two-layer interval weighted graphs in nonstationary time series forecasting and evaluation of market risks. The first layer of the graph, formed with the primary system training, displays potential system fluctuations at the time of system training. Interval vertexes of the second layer of the graph (the superstructure of the first layer) which display the degree of time series modeling error are connected with the first layer by edges. The proposed model has been approved by the 90-day forecast of steel billets. The average forecast error amounts 2,6 % (it’s less than the average forecast error of the autoregression models).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"