All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Фазовый переход от α-спиралей к β-листам в суперспиралях фибриллярных белков
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 705-725Изучен переход от α-структур к β-структурам под воздействием внешнего механического поля в молекуле фибрина, содержащей суперспирали, и разрешен ландшафт энергии. Проведено детальное теоретическое моделирование отдельных этапов процесса растяжения суперспирального фрагмента. На графиках зависимости силы (F) от растяжения молекулы (X) для тандема из двух симметричных суперспиралей фибрина (длина каждой ∼17 нм) видны три режима механического поведения: (1) линейный (упругий) режим, в котором суперспирали ведут себя как энтропийная пружина (F<100−125 пН и X<7−8 нм), (2) вязкий (пластичный) режим, в котором сила сопротивления молекулы не меняется с увеличением растяжения (F≈150 пН и X≈10−35 нм) и (3) нелинейный режим зависимости F от X (F>175−200 пН и X>40−50 нм). В линейном режиме суперспирали раскручиваются на угол в 2π радиан, но структурные изменения на уровне вторичной структуры не происходят. Вязкий режим сопровождается фазовым переходом от тройных α-спиралей к параллельным β-листам, в результате которого изменяется вторичная структура. Критическое растяжение α-спиралей составляет 0.25 нм на один виток, а характерное изменение энергии — 4.9 ккал/моль. Также были подсчитаны связанные с фазовым переходом изменения во внутренней энергии Δu, энтропии Δs и механической емкости cf из расчета на один виток α-спирали. Подобное динамическое поведение α-спиралей при растяжении белковых филаментов может являться универсальным механизмом регуляции фибриллярных α-спиральных белков в ответ на внешнее силовое воздействие, возникающее в результате действия биологических сил.
Ключевые слова: фазовый переход от α-спиралей к β-листам, термодинамика перехода от α-спиралей к β-листам, фибриноген, нити фибрина, молекулярное моделирование, молекулярная динамика, графические процессоры.
Phase transition from α-helices to β-sheets in supercoils of fibrillar proteins
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 705-725Views (last year): 6. Citations: 1 (RSCI).The transition from α-helices to β-strands under external mechanical force in fibrin molecule containing coiled-coils is studied and free energy landscape is resolved. The detailed theoretical modeling of each stage of coiled-coils fragment pulling process was performed. The plots of force (F) as a function of molecule expansion (X) for two symmetrical fibrin coiled-coils (each ∼17 nm in length) show three distinct modes of mechanical behaviour: (1) linear (elastic) mode when coiled-coils behave like entropic springs (F<100−125 pN and X<7−8 nm), (2) viscous (plastic) mode when molecule resistance force does not increase with increase in elongation length (F≈150 pN and X≈10−35 nm) and (3) nonlinear mode (F>175−200 pN and X>40−50 nm). In linear mode the coiled-coils unwind at 2π radian angle, but no structural transition occurs. Viscous mode is characterized by the phase transition from the triple α-spirals to three-stranded parallel β-sheet. The critical tension of α-helices is 0.25 nm per turn, and the characteristic energy change is equal to 4.9 kcal/mol. Changes in internal energy Δu, entropy Δs and force capacity cf per one helical turn for phase transition were also computed. The observed dynamic behavior of α-helices and phase transition from α-helices to β-sheets under tension might represent a universal mechanism of regulation of fibrillar protein structures subject to mechanical stresses due to biological forces.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"