All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Семантическая структуризация текстовых документов на основе паттернов сущностей естественного языка
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1185-1197Рассматривается технология создания паттернов из слов (понятий) естественного языка по текстовым данным в модели «мешок слов». Паттерны применяются для снижения размерности исходного пространства в описании документов и поиска семантически связанных слов по темам. Процесс снижения размерности реализуется через формирование по паттернам латентных признаков. Исследуется многообразие структур отношений документов для разбиения их на темы в латентном пространстве.
Считается, что заданное множество документов (объектов) разделено на два непересекающихся класса, для анализа которых необходимо использовать общий словарь. Принадлежность слов к общему словарю изначально неизвестна. Объекты классов рассматриваются в ситуации оппозиции друг к другу. Количественные параметры оппозиционности определяются через значения устойчивости каждого признака и обобщенные оценки объектов по непересекающимся наборам признаков.
Для вычисления устойчивости используются разбиения значений признаков на непересекающиеся интервалы, оптимальные границы которых определяются по специальному критерию. Максимум устойчивости достигается при условии, что в границах каждого интервала содержатся значения одного из двух классов.
Состав признаков в наборах (паттернах из слов) формируется из упорядоченной по значениям устойчивости последовательности. Процесс формирования паттернов и латентных признаков на их основе реализуется по правилам иерархической агломеративной группировки.
Набор латентных признаков используется для кластерного анализа документов по метрическим алгоритмам группировки. В процессе анализа применяется коэффициент контентной аутентичности на основе данных о принадлежности документов к классам. Коэффициент является численной характеристикой доминирования представителей классов в группах.
Для разбиения документов на темы предложено использовать объединение групп по отношению их центров. В качестве закономерностей по каждой теме рассматривается упорядоченная по частоте встречаемости последовательность слов из общего словаря.
Приводятся результаты вычислительного эксперимента на коллекциях авторефератов научных диссертаций. Сформированы последовательности слов из общего словаря по четырем темам.
Ключевые слова: тематическое моделирование, иерархическая агломеративная группировка, онтология, общий словарь, контентная аутентичность.
Semantic structuring of text documents based on patterns of natural language entities
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1185-1197The technology of creating patterns from natural language words (concepts) based on text data in the bag of words model is considered. Patterns are used to reduce the dimension of the original space in the description of documents and search for semantically related words by topic. The process of dimensionality reduction is implemented through the formation of patterns of latent features. The variety of structures of document relations is investigated in order to divide them into themes in the latent space.
It is considered that a given set of documents (objects) is divided into two non-overlapping classes, for the analysis of which it is necessary to use a common dictionary. The belonging of words to a common vocabulary is initially unknown. Class objects are considered as opposition to each other. Quantitative parameters of oppositionality are determined through the values of the stability of each feature and generalized assessments of objects according to non-overlapping sets of features.
To calculate the stability, the feature values are divided into non-intersecting intervals, the optimal boundaries of which are determined by a special criterion. The maximum stability is achieved under the condition that the boundaries of each interval contain values of one of the two classes.
The composition of features in sets (patterns of words) is formed from a sequence ordered by stability values. The process of formation of patterns and latent features based on them is implemented according to the rules of hierarchical agglomerative grouping.
A set of latent features is used for cluster analysis of documents using metric grouping algorithms. The analysis applies the coefficient of content authenticity based on the data on the belonging of documents to classes. The coefficient is a numerical characteristic of the dominance of class representatives in groups.
To divide documents into topics, it is proposed to use the union of groups in relation to their centers. As patterns for each topic, a sequence of words ordered by frequency of occurrence from a common dictionary is considered.
The results of a computational experiment on collections of abstracts of scientific dissertations are presented. Sequences of words from the general dictionary on 4 topics are formed.
-
Ранговый анализ уголовных кодексов Российской Федерации, Федеративной Республики Германия и Китайской Народной Республики
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 969-981При принятии решения в различных областях человеческой деятельности часто требуется создавать текстовые документы. Традиционно изучением текстов занимается лингвистика, которая в широком смысле может пониматься как часть семиотики — науки о знаках и знаковых системах, при этом семиотические объекты бывают разных типов. Для количественного исследования знаковых систем широко используется метод ранговых распределений. Ранговое распределение — упорядоченная в порядке убывания по частоте появления совокупность наименований элементов. Для частотно-ранговых распределений исследователи часто используют название рower-law distributions.
В данной работе метод ранговых распределений применяется для анализа Уголовного кодекса различных стран. Общая идея подхода при решении этой задачи состоит в рассмотрении кодекса как текстового документа, в котором знаком является мера наказания за отдельные преступления. Документ представляется как список вхождений некоторого слова (знака), а также всех его производных (словоформ). Совокупность всех этих знаков образует словарь наказаний, для которого выполняется подсчет частоты встречаемости каждой меры наказания в тексте кодекса. Это позволяет преобразовать построенный словарь в частотный словарь наказаний, для дальнейшего исследования которого используются подход В. П. Маслова, предложенный им к анализу задач лингвистики. Этот подход состоит в введении понятия виртуальной частоты встречаемости преступления, которая является мерой оценки не только реального вреда для общества, но и последствий совершенного преступления в различных сферах жизни человека. На этом пути в работе предлагается параметризация рангового распределения для анализа словаря наказаний Особенной части Уголовного кодекса Российской Федерации, касающейся наказаний за экономические преступления. Рассмотрены различные редакции кодекса и показано, что построенная модель объективно отражает его изменения в лучшую сторону, вносимые законодателями с течением времени. Были исследованы тексты, включающие сходные по составу преступления, аналогичные российскому специальному разделу Особенной части, для Уголовных кодексов, действующих в Федеративной Республике Германия и Китайской Народной Республике. Полученные в статье ранговые распределения для соответствующих частотных словарей кодексов совпадают с полученным В. П. Масловым законом, существенно уточняющим закон Ципфа. Это позволяет сделать вывод как о хорошей организации текста, так и об адекватности выбранного наказания для преступлений.
Ключевые слова: Уголовный кодекс, ранговое распределение, степенное распределение, виртуальная частота, закон Маслова.
Rank analysis of the criminal codes of the Russian Federation, the Federal Republic of Germany and the People’s Republic of China
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 969-981When making decisions in various fields of human activity, it is often required to create text documents. Traditionally, the study of texts is engaged in linguistics, which in a broad sense can be understood as a part of semiotics — the science of signs and sign systems, while semiotic objects are of different types. The method of rank distributions is widely used for the quantitative study of sign systems. Rank distribution is a set of item names sorted in descending order by frequency of occurrence. For frequency-rank distributions, researchers often use the term «power-law distributions».
In this paper, the rank distribution method is used to analyze the Criminal Code of various countries. The general idea of the approach to solving this problem is to consider the code as a text document, in which the sign is the measure of punishment for certain crimes. The document is presented as a list of occurrences of a specific word (character) and its derivatives (word forms). The combination of all these signs characters forms a punishment dictionary, for which the occurrence frequency of each punishment in the code text is calculated. This allows us to transform the constructed dictionary into a frequency dictionary of punishments and conduct its further research using the V. P. Maslov approach, proposed to analyze the linguistics problems. This approach introduces the concept of the virtual frequency of crime occurrence, which is an assessment measure of the real harm to society and the consequences of the crime committed in various spheres of human life. On this path, the paper proposes a parametrization of the rank distribution to analyze the punishment dictionary of the Special Part of the Criminal Code of the Russian Federation concerning punishments for economic crimes. Various versions of the code are considered, and the constructed model was shown to reflect objectively undertaken over time by legislators its changes for the better. For the Criminal Codes in force in the Federal Republic of Germany and the People’s Republic of China, the texts including similar offenses and analogous to the Russian special section of the Special Part were studied. The rank distributions obtained in the article for the corresponding frequency dictionaries of codes coincide with those obtained by V. P. Maslov’s law, which essentially clarifies Zipf’s law. This allows us to conclude both the good text organization and the adequacy of the selected punishments for crimes.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"