All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Профили вызванной суперспирализацией дестабилизации дуплекса ДНК (SIDD) для промоторов бактериофага T7
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 867-878Для функционирования регуляторных областей ДНК решающее значение имеет не нуклеотидная последовательность (генетический текст), а их физико-химические и структурные свойства. Именно они обеспечивают кодирование ДНК-белковых взаимодействий, лежащих в основе различных процессов регуляции. Среди таких свойств SIDD (Stress-Induced Duplex Destabilization) — характеристика, описывающая склонность участка дуплекса ДНК к плавлению при заданном уровне суперспирализации. Ранее для данного параметра дуплекса показана роль в функционировании областей регуляции различного типа. В данной работе модель SIDD использована для получения профилей вероятности плавления последовательностей промоторов бактериофага T7. Данный геном характеризуется малым размером (примерно 40 тыс. пар нуклеотидов) и временной организацией экспрессии генов: на первом этапе инфекции ранняя область Т7-ДНК транскрибируется РНК-полимеразой бактерии-хозяина, на более поздних этапах жизненного цикла фагоспецифичная РНК-полимераза последовательно производит транскрипцию областей генов II класса и III класса. При этом механизмы дифференциального узнавания промоторов разных групп ферментом-полимеразой не могут быть основаны исключительно на их нуклеотидной последовательности, в частности в связи с тем, что она очень близка для большинства таких промоторов. В то же время полученные профили SIDD данных промоторов сильно различаются и могут быть разделены на характерные группы, соответствующие функциональным классам промоторов Т7-ДНК. Так, все промоторы ранней области находятся в области влияния одного максимально дестабилизированного участка дуплекса ДНК, соответствующего различным областям конкретных промоторов. Промоторы класса II лишены значительно дестабилизированных областей вблизи точки старта транскрипции. Напротив, промоторы III класса имеют характерные пики профилей вероятности плавления, в каждом случае локализованные в ближней downstream-области. Таким образом, установлены значительные различия профилей для промоторных областей при очень близкой нуклеотидной последовательности (промоторы II и III классов отличаются единичными заменами нуклеотидов), что подтверждает высокую чувствительность рассматриваемого свойства дуплекса к первичной структуре, а также необходимость рассмотрения широкого генетического контекста. Описанные различия профилей вероятности плавления на основе модели SIDD наряду с другими физическими свойствами могут определять дифференциальное узнавание промоторов разных классов РНК-полимеразами.
Ключевые слова: бактериофаг T7, промотор, РНК-полимераза, физика ДНК, вызванная суперспирализацией дестабилизация дуплекса ДНК.
Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878Views (last year): 18.The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.
-
К вопросу выбора структуры многофакторной регрессионной модели на примере анализа факторов выгорания творческих работников
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 265-274В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.
Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.
На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.
Ключевые слова: многофакторный статистический анализ, систематизация предикторов, методы снижения размерности, модель анализа профессионального выгорания.
On the question of choosing the structure of a multivariate regression model on the example of the analysis of burnout factors of artists
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 265-274The article discusses the problem of the influence of the research goals on the structure of the multivariate model of regression analysis (in particular, on the implementation of the procedure for reducing the dimension of the model). It is shown how bringing the specification of the multiple regression model in line with the research objectives affects the choice of modeling methods. Two schemes for constructing a model are compared: the first does not allow taking into account the typology of primary predictors and the nature of their influence on the performance characteristics, the second scheme implies a stage of preliminary division of the initial predictors into groups, in accordance with the objectives of the study. Using the example of solving the problem of analyzing the causes of burnout of creative workers, the importance of the stage of qualitative analysis and systematization of a priori selected factors is shown, which is implemented not by computing means, but by attracting the knowledge and experience of specialists in the studied subject area. The presented example of the implementation of the approach to determining the specification of the regression model combines formalized mathematical and statistical procedures and the preceding stage of the classification of primary factors. The presence of this stage makes it possible to explain the scheme of managing (corrective) actions (softening the leadership style and increasing approval lead to a decrease in the manifestations of anxiety and stress, which, in turn, reduces the severity of the emotional exhaustion of the team members). Preclassification also allows avoiding the combination in one main component of controlled and uncontrolled, regulatory and controlled feature factors, which could worsen the interpretability of the synthesized predictors. On the example of a specific problem, it is shown that the selection of factors-regressors is a process that requires an individual solution. In the case under consideration, the following were consistently used: systematization of features, correlation analysis, principal component analysis, regression analysis. The first three methods made it possible to significantly reduce the dimension of the problem, which did not affect the achievement of the goal for which this task was posed: significant measures of controlling influence on the team were shown. allowing to reduce the degree of emotional burnout of its participants.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"