All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.
Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.
В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.
Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.
Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.
Ключевые слова: приближение среднего поля, системы реакционно-диффузионного типа, нелинейное самосогласованное уравнение Фоккера–Планка, динамические фазовые переходы, беспорядок.
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607Views (last year): 7.We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.
We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.
In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.
Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.
Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.
-
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
Ключевые слова: математическое моделирование, тепловая модель, кластер, электронная система, стохастический, тепловой процесс, статистические меры, математические ожидания, ковариации, дисперсии.
Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.
-
Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.
Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.
Ключевые слова: многокритериальная оценка, риск, стратегия эксплуатации, динамика средних, стационарный режим цепи Маркова, облачные технологии, открытая интеграционная платформа.
System modeling, risks evaluation and optimization of a distributed computer system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.
The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.
Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.
-
О некоторых свойствах коротковолновой статистики временных рядов FOREX
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.
В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.
Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.
Ключевые слова: временной ряд FOREX, распределение времен ожидания, распределение вероятностей с тяжелыми хвостами, корреляционный анализ временных рядов, случайное блуждание в непрерывном времени.
On some properties of short-wave statistics of FOREX time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669Views (last year): 10.Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.
In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.
To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"