Результаты поиска по 'регрессионный анализ':
Найдено статей: 21
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 139-142
    Views (last year): 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 733-735
    Views (last year): 20.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 689-692
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 455-457
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 669-671
  7. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 485-489
  8. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1415-1418
  9. Предложен метод расчета границ качественных классов для количественных характеристик систем любой природы. Метод позволяет установить: связи, не поддающиеся обнаружению при помощи корреляционного и регрессионного анализа; границы для качественных классов индикатора состояния систем и факторов, влияющих на это состояние; вклад факторов в степень «неприемлемости» значений индикатора; достаточность программы наблюдений за
    факторами для описания причин «неприемлемости» значений индикатора.

    A calculation method for boundaries of quality classes for quantitative systems characteristics of any nature is suggested. The method allows to determine interactions which are not detectable using correlation and regression analysis; quality classes’ boundaries of systems’ condition indicator and boundaries of the factors influencing this condition; contribution of the factors to a degree of «inadmissibility» of indicator values; sufficiency of the program observing the factors to describe the causes of «inadmissibility» of indicator values.

    Views (last year): 1. Citations: 6 (RSCI).
  10. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

    Yudin N.E.
    Modified Gauss–Newton method for solving a smooth system of nonlinear equations
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723

    In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.

Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"