All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Персонализация математических моделей в кардиологии: трудности и перспективы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.
Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.
Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.
Ключевые слова: вычислительная биомеханика, персонализированная модель.
Personalization of mathematical models in cardiology: obstacles and perspectives
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model. -
Редуцированная модель фотосистемы II для оценки характеристик фотосинтетического аппарата по данным индукции флуоресценции
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 943-958Рассматривается подход для анализа некоторых биологических систем большой размерности, для которых справедливы предположения о квазиравновесных стадиях. Подход позволяет редуцировать детальные модели большой размерности и получить упрощенные модели, имеющие аналитическое решение. Это дает возможность достаточно точно воспроизводить экспериментальные кривые. Рассматриваемый подход был применен к детальной модели первичных процессов фотосинтеза в реакционном центре фотосистемы II. Упрощенная модель фотосистемы II хорошо описывает экспериментальных кривые индукции флуоресценции для высших и низших растений, полученные при разных интенсивностях света. Выведенные соотношения между переменными и параметрами детальной и упрощенной моделей, позволили использовать полученные оценки параметров упрощенной модели для описания динамики различных состояний фотосистемы II детальной модели.
Reduced model of photosystem II and its use to evaluate the photosynthetic apparatus characteristics according to the fluorescence induction curves
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 943-958Views (last year): 3. Citations: 2 (RSCI).The approach for the analysis of some large-scale biological systems, on the base of quasiequilibrium stages is proposed. The approach allows us to reduce the detailed large-scaled models and obtain the simplified model with an analytical solution. This makes it possible to reproduce the experimental curves with a good accuracy. This approach has been applied to a detailed model of the primary processes of photosynthesis in the reaction center of photosystem II. The resulting simplified model of photosystem II describes the experimental fluorescence induction curves for higher and lower plants, obtained under different light intensities. Derived relationships between variables and parameters of detailed and simplified models, allow us to use parameters of simplified model to describe the dynamics of various states of photosystem II detailed model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"