Результаты поиска по 'семейства ограничений':
Найдено статей: 9
  1. Гайко В.А.
    Глобальный бифуркационный анализ рациональной системы Холлинга
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545

    В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.

    Gaiko V.A.
    Global bifurcation analysis of a rational Holling system
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545

    In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.

    Views (last year): 11.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 939-942
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1261-1264
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  6. Лобанов А.И.
    Разностные схемы для уравнения переноса, удовлетворяющие обобщенному условию аппроксимации
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 181-193

    Cтроится семейство явных разностных схем на пятиточечном шаблоне для численного решения линейного уравнения переноса. Анализ свойств разностных схем проводится в пространстве неопределенных коэффициентов. Такие пространства впервые были введены в рассмотрение А. С. Холодовым. Для исследования свойств разностных схем ставилась задача линейного программирования. В качестве целевой функции обычно рассматривался коэффициент при главном члене невязки. Для построения монотонных разностных схем ставилась задача оптимизации с ограничениями типа неравенств. Ограниченность такого подхода становится ясной с учетом того, что аппроксимация разностной схемы определяется лишь на классических (гладких) решениях дифференциальной задачи.

    В соответствие разностной схеме ставится некоторый функционал, определяющий свойства разностной схемы. Функционал должен быть линейным по коэффициентам схемы. Возможно, что функционал зависит от сеточной функции — решения разностной задачи или проекции на сетку решения дифференциальной задачи. Если первые члены разложения в ряд Тейлора этого функционала по сеточным параметрам совпадут с условиями классической аппроксимации, такой функционал будем называть обобщенным условием аппроксимации. В статье показано, что такие функционалы существуют. Для линейного уравнения с постоянными коэффициентами построение такого функционала возможно и для обобщенного (негладкого) решения дифференциальной задачи.

    Построение разностной схемы с заданными свойствами тогда опирается на решение задачи поиска минимума функционала.

    Построены семейства функционалов как для гладких решений исходной дифференциальной задачи, так и для обобщенных решений. Построены новые разностные схемы, основанные на анализе функционалов методами линейного программирования. При этом использован аппарат исследования пары самодвойственных задач линейного программирования. Найдена оптимальная монотонная разностная схема, обладающая первым порядком аппроксимации на гладком решении. Обсуждается возможность применения построенных новых схем для построения гибридных разностных схем повышенного порядка аппроксимации на гладких решениях.

    Приводится пример численной реализации простейшей разностной схемы с обобщенной аппроксимацией.

    Lobanov A.I.
    Finite difference schemes for linear advection equation solving under generalized approximation condition
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193

    A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.

    The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.

    Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.

    The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.

    Views (last year): 27.
  7. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

    Yudin N.E.
    Modified Gauss–Newton method for solving a smooth system of nonlinear equations
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723

    In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.

  8. Минкевич И.Г.
    Стехиометрический синтез метаболических путей
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1241-1267

    Описан векторно-матричный подход для теоретического конструирования метаболических путей, превращающих химические соединения, а именно заданные субстраты, в желаемые продукты. Это математическая основа для генерирования альтернативных наборов биохимических реакций, выполняющих заданное превращение «субстрат–продукт». Эти пути получаются из применяемой базы данных по биохимическим реакциям и используют стехиометрию и ограничения, основанные на необратимости некоторых реакций. Показано, что число ограничений может быть заметно снижено благодаря существованию семейств параллельных ограничительных плоскостей в пространстве потоков через реакции. Совпадающие плоскости с противоположными направлениями ограничений приводят к существованию фиксированных значений потоков через реакции. Рассмотрена также задача исключения так называемых футильных циклов. Использование этих факторов позволяет существенно снизить сложность задачи и необходимые вычислительные ресурсы. Приведен пример альтернативных биохимических путей превращения глюкозы и глицерина в янтарную кислоту. Обнаружено, что для заданной пары «субстрат–продукт» многие пути имеют один и тот же баланс макроэргических связей.

    Minkevich I.G.
    Stoichiometric synthesis of metabolic pathways
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1241-1267

    A vector-matrix approach to the theoretical design of metabolic pathways converting chemical compounds, viz., preset substrates, into desirable products is described. It is a mathematical basis for computer–aided generation of alternative biochemical reaction sets executing the given substrate–product conversion. The pathways are retrieved from the used database of biochemical reactions and utilize the reaction stoichiometry and restrictions based on the irreversibility of a part of them. Particular attention is paid to the analysis of restriction interrelations. It is shown that the number of restrictions can be notably reduced due to the existence of families of parallel restricting planes in the space of reaction flows. Coinciding planes of contradirectional restrictions result in the existence of fixed reaction flow values. The problem of exclusion of so called futile cycles is also considered. Utilization of these factors allows essential lowering of the problem complexity and necessary computational resources. An example of alternative biochemical pathway computation for conversion of glucose and glycerol into succinic acid is given. It is found that for a preset “substrate–product” pair many pathways have the same high-energy bond balance.

    Views (last year): 6. Citations: 3 (RSCI).
  9. Зейде К.М., Вардугина А.Ю., Марвин С.В.
    Быстрый метод анализа возмущения электромагнитного поля малыми сферическими рассеивателями
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1039-1050

    В данной работе рассматривается особая аппроксимация обобщенной формулы возмущения электромагнитного поля семейством электрически малых сферических неоднородностей. Задача, рассматриваемая в настоящей работе, возникает во множестве приложений технической электродинамики, радиолокации, подповерхностного зондирования и дефектоскопии. В общем случае она формулируются следующим образом: в некоторой точке возмущенного пространства необходимо определить амплитуду электромагнитного поля. Возмущение электромагнитных волн вызывается семейством электрически малых распределенных в пространстве рассеивателей. Источник электромагнитных волн располагается также в возмущенном пространстве. Задача решается введением допущения для дальнего поля рассеяния и через формулировку для эффективной поверхности рассеяния неоднородности. Это, в свою очередь, позволяет существенно убыстрить вычисления возмущенного электромагнитного поля семейством идентичных друг другу сферических неоднородностей с произвольными электрофизическими параметрами. Аппроксимация проверяется путем сравнения получаемых результатов с решением обобщенной формулы для возмущения электромагнитного поля. В данной работе рассматривается только прямая задача рассеяния, тем самым все параметры рассеивателей являются известными. В этом контексте можно утверждать, что формулировка соответствует корректно поставленной задаче и не подразумевает решение интегрального уравнения в обобщенной формуле. Одной из особенностью предложенного алгоритма является выделение характерной плоскости на границе пространства. Все точки наблюдения за состоянием системы принадлежат этой плоскости. Семейство рассеивателей располагается внутри области наблюдения, которая формируется этой поверхностью. Данный подход, кроме всего прочего, позволяет снять ряд ограничений на использование обобщенной формулировки для возмущенного электрического поля, например требование по удаленности неоднородностей друг от друга в пространстве распространения электромагнитных волн. Учет вклада каждого рассеивателя в семействе неоднородностей производится путем перехода к значениям их эффективных поверхностей рассеяния и дальнейшего их суммирования с учетом возникающих волновых эффектов, таких как интерференция и многократное отражение. В статье приводятся и описываются ограничения предложенного метода, а также рассматриваются возможные его модификации и дополнения.

    Zeyde K.M., Vardugina A.Y., Marvin S.V.
    Fast method for analyzing the electromagnetic field perturbation by small spherical scatterer
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1039-1050

    In this work, we consider a special approximation of the general perturbation formula for the electromagnetic field by a set of electrically small inhomogeneities located in the domain of interest. The problem considered in this paper arises in many applications of technical electrodynamics, radar technologies and subsurface remote sensing. In the general case, it is formulated as follows: at some point in the perturbed domain, it is necessary to determine the amplitude of the electromagnetic field. The perturbation of electromagnetic waves is caused by a set of electrically small scatterers distributed in space. The source of electromagnetic waves is also located in perturbed domain. The problem is solved by introducing the far field approximation and through the formulation for the scatterer radar cross section value. This, in turn, allows one to significantly speed up the calculation process of the perturbed electromagnetic field by a set of a spherical inhomogeneities identical to each other with arbitrary electrophysical parameters. In this paper, we consider only the direct scattering problem; therefore, all parameters of the scatterers are known. In this context, it may be argued that the formulation corresponds to the well-posed problem and does not imply the solution of the integral equation in the generalized formula. One of the features of the proposed algorithm is the allocation of a characteristic plane at the domain boundary. All points of observation of the state of the system belong to this plane. Set of the scatterers is located inside the observation region, which is formed by this surface. The approximation is tested by comparing the results obtained with the solution of the general formula method for the perturbation of the electromagnetic field. This approach, among other things, allows one to remove a number of restrictions on the general perturbation formula for E-filed analysis.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"