All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность.
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence. -
Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.
Numerical analyses of singularity in the integral equation of theory of liquids in the RISM approximation
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 51-62Views (last year): 4.An approach to evaluation of a parametric portrait of integral equations of the theory of liquids in the RISM approximation was proposed. To obtain all associated solutions the continuation method was used. The equations reduced to a two-centered molecule model for symmetry reasons were deduced for molecular liquids. For molecular liquids, some equations were obtained which could be reduced, for symmetry reasons, to a two-center molecular model. To avoid critical points we changed the dependence of RISM-equations on reverse compressibility. The suggested method was used to perform numerical computations of methane reverse compressibility isotherms with three closures. No bifurcation of solutions was observed in the case of the partially linearized hypernetted chain closure. For other closures bifurcations of solutions were obtained and the model behavior nontypical for simple liquids was observed. In the case of Percus-Yevick closure nonphysical solutions were obtained at low temperature and density. Additional solution branch with a kink in the bifurcation point was obtained in the case of hypernetted chain closure at temperature above the critical point.
-
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность.
Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.
-
Оптимизация параметров и структуры параллельного сферического манипулятора
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1523-1534Статья представляет собой исследование математической модели и особенностей кинематики параллельного сферического манипулятора. Этот тип манипулятора был предложен еще в 80-х годах прошлого века и с тех пор нашел применение в экзоскелетах и реабилитационных роботах благодаря своей структуре, которая позволяет имитировать естественные движения суставов человеческого тела.
Параллельный сферический манипулятор имеет три параллельных двухзвенных рычажных механизма, которые соединяют две платформы — базовую и мобильную. Звенья механизма имеют дугообразную форму. Геометрически манипулятор можно описать с помощью двух виртуальных пирамид, которые расположены друг над другом.
В данной работе рассматриваются два основных типа конфигураций манипулятора (классическая и асимметричная) и решаются основные кинематические задачи для каждой из них. Исследование показывает, что асимметричное исполнение манипулятора имеет максимальное рабочее пространство, особенно когда моторы установлены в месте соединения опорных звеньев манипулятора.
Для оптимизации параметров параллельного сферического манипулятора вводится метрика полезного объема рабочего пространства. Данная метрика представляет собой объем сектора сферы, в котором робот не испытывает внутренних коллизий или сингулярных состояний. Внутри параллельного сферического манипулятора возможны три типа сингулярных состояний: последовательная, параллельная и смешанная сингулярность. Для расчета полезного объема были учтены все три типа сингулярностей. В ходе исследования решалась задача максимизации полезного объема рабочего пространства.
В результате исследования было обнаружено, что асимметричная конфигурация сферического манипулятора обеспечивает максимальное рабочее пространство, когда моторы расположены в месте соединения опорных звеньев механизмов робота. При этом для достижения максимального рабочего пространства параметр $\beta_1$ должен быть равен нулю градусов. Это позволило создать прототип робота, в котором вместо нижних опорных звеньев использована радиусная рельса, вдоль которой движутся моторы. Это позволило уменьшить линейные размеры самого робота и повысить жесткость конструкции.
Полученные результаты могут быть использованы для оптимизации параметров параллельного сферического манипулятора с целью применения его в различных промышленных и научных задачах, а также для дальнейшего исследования других типов параллельных роботов и манипуляторов.
Ключевые слова: роботы параллельного типа, оптимизация дизайна робота, параллельный сферический манипулятор.
Optimisation of parameters and structure of a parallel spherical manipulator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.
The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.
The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.
To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.
Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.
The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.
-
Режимы с обострением в истории человечества или воспоминания о будущем
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.
Ключевые слова: биологическая и социальная эволюция, гиперболический рост, переходные процессы, стабилизация.
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
-
Применимость приближения однократного рассеяния при импульсном зондировании неоднородной среды
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1063-1079В работе рассмотрена математическая модель, основанная на линейном интегро-дифференциальном уравнении Больцмана, описывающая перенос излучения в рассеивающей среде, подвергающейся импульсному облучению точечным источником. Сформулирована обратная задача для уравнения переноса, заключающаяся в определении коэффициента рассеяния по временно-угловому распределению плотности потока излучения в заданной точке пространства. При исследовании обратной задачи анализируется представление решения уравнения в виде ряда Неймана. Нулевой член ряда описывает нерассеянное излучение, первый член ряда — однократно рассеянное поле, остальные члены — многократно рассеянное поле. Для областей с небольшой оптической толщиной и невысоким уровнем рассеяния при нахождении приближенного решения уравнения переноса излучения широкое распространение получило приближение однократного рассеяния. При использовании этого подхода к задаче с дополнительными ограничениями на исходные данные получена аналитическая формула для нахождения коэффициента рассеяния. Для проверки адекватности полученной формулы построен и программно реализован весовой метод Монте-Карло решения уравнения переноса, учитывающий многократное рассеяние в среде и пространственно-временную сингулярность источника излучения. Применительно к проблемам высокочастотного акустического зондирования в океане проведены вычислительные эксперименты. Показано, что применение приближения однократного рассеяния оправдано по крайней мере на дальности зондирования порядка ста метров, причем основное влияние на погрешность формулы вносят двукратно и трехкратно рассеянные поля. Для областей большего размера приближение однократного рассеяния в лучшем случае дает лишь качественное представление о структуре среды, иногда не позволяя определить даже порядок количественных характеристик параметров взаимодействия излучения с веществом.
Ключевые слова: уравнение перенос излучения, обратная задача, коэффициент рассеяния, приближение однократного рассеяния, метод Монте-Карло.
The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1063-1079The mathematical model based on the linear integro-differential Boltzmann equation is considered in this article. The model describes the radiation transfer in the scattering medium irradiated by a point source. The inverse problem for the transfer equation is defined. This problem consists of determining the scattering coefficient from the time-angular distribution of the radiation flux density at a given point in space. The Neumann series representation for solving the radiation transfer equation is analyzed in the study of the inverse problem. The zero member of the series describes the unscattered radiation, the first member of the series describes a single-scattered field, the remaining members of the series describe a multiple-scattered field. When calculating the approximate solution of the radiation transfer equation, the single scattering approximation is widespread to calculated an approximate solution of the equation for regions with a small optical thickness and a low level of scattering. An analytical formula is obtained for finding the scattering coefficient by using this approximation for problem with additional restrictions on the initial data. To verify the adequacy of the obtained formula the Monte Carlo weighted method for solving the transfer equation is constructed and software implemented taking into account multiple scattering in the medium and the space-time singularity of the radiation source. As applied to the problems of high-frequency acoustic sensing in the ocean, computational experiments were carried out. The application of the single scattering approximation is justified, at least, at a sensing range of about one hundred meters and the double and triple scattered fields make the main impact on the formula error. For larger regions, the single scattering approximation gives at the best only a qualitative evaluation of the medium structure, sometimes it even does not allow to determine the order of the parameters quantitative characteristics of the interaction of radiation with matter.
-
Пространственно-временные модели распространения информационно-коммуникационных технологий
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.
Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.
Ключевые слова: диффузия инноваций, бегущая волна, пространственно-временная модель, мобильная связь, информационно-коммуникационные технологии.
Spatio-temporal models of ICT diffusion
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.
The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"