Результаты поиска по 'скорость':
Найдено статей: 277
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 209-212
  2. Виноградова П.В., Зарубин А.Г., Самусенко А.М.
    Метод Галёркина–Петрова для одномерных параболических уравнений высокого порядка в областях с меняющейся границей
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 3-10

    Исследуется начально-краевая задача для параболических уравнений высокого порядка в областях с переменной границей. Устанавливается возможность применения метода Галёркина–Петрова, и находятся асимптотические оценки скорости сходимости приближённых решений к точным.

    Vinogradova P.V., Zarubin A.G., Samusenko A.M.
    Galerkin–Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 3-10

    In the current paper, we study a Galerkin–Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.

    Views (last year): 2.
  3. Найштут Ю.С.
    Решение краевых задач теории тонких упругих оболочек методом Неймана
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1143-1153

    Изучаются возможности применения метода Неймана для решения краевых задач теории тонких упругих оболочек. Приводится вариационная формулировка задач статического расчета оболочек, позволяющая рассматривать проблемы в рамках пространств обобщенных функций. Доказывается сходимость процедуры Неймана для оболочек с отверстиями, когда граничный контур закреплен не полностью. Численная реализация метода Неймана обычно требует значительного времени для получения надежного результата. В статье предлагается способ, улучшающий скорость сходимости процесса, позволяющий применить параллельные вычисления и их контроль во время работы алгоритма.

    Nayshtut Yu.S.
    Neumann's method to solve boundary problems of elastic thin shells
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153

    This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.

    Views (last year): 3.
  4. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 673-675
    Views (last year): 1.
  5. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 1 с.
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 1 p.
  6. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 139-142
    Views (last year): 2.
  7. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 357-359
    Views (last year): 3.
  8. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 853-855
    Views (last year): 6.
  9. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 3-5
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 3-5
    Views (last year): 10.
  10. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 163-164
    Views (last year): 6.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"