All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.
Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.
Ключевые слова: численная схема «КАБАРЕ», слабосжимаемая жидкость, неустойчивость Кельвина–Гельгольца, завихренность, энстрофия, инкремент неустойчивости, недоразрешаемые слои, «паразитный» вихрь, свертывание, инерционный интервал, когерентные структуры, филаментация, скорость диссипации, дилатация.
CABARET scheme implementation for free shear layer modeling
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903Views (last year): 17.In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.
The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods
-
Численное моделирование обратного влияния полимерной примеси на колмогоровское течение
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1093-1105Предложен численный метод, аппроксимирующий уравнения динамики слабосжимаемого вязкого течения при наличии полимерной составляющей потока. Исследуется поведение течения под воздействием статической внешней периодической силы в периодической квадратной ячейке. Методика основывается на гибридном подходе. Гидродинамика течения описывается системой уравнений Навье – Стокса и численно аппроксимируется линеаризованным методом Годунова. Полимерное поле описывается системой уравнений для вектора растяжений полимерных молекул $\bf R$, которая численно аппроксимируются методом Курганова – Тедмора. Выбор модельных соотношений при разработке численной методики и подбор параметров моделирования позволили на качественном уровне смоделировать и исследовать режим эластической турбулентности при низких числах Рейнольдса $Re \sim 10^{-1}$. Уравнения динамики течения полимерного раствора отличаются от уравнений динамики ньютоновской жидкости наличием в правой части членов, описывающих силы, действующие со стороны полимерной компоненты. Коэффициент пропорциональности $A$ при данных членах характеризует степень обратного влияния количества полимеров на поток. В статье подробно исследуется влияние этого коэффициента на структуру и характеристики потока. Показано, что с его ростом течение становится более хаотическим. Построены энергетические спектры полученных течений и спектры полей растяжения полимеров для различных величин коэффициента $A$. В спектрах прослеживается инерциальный поддиапа- зон энергетического каскада для скорости течения с показателем $k \sim −4$, для каскада растяжений полимерных молекул с показателем $−1,6$.
Ключевые слова: численное моделирование, эластическая турбулентность, гидродинамическая неустойчивость.
Numerical simulation of the backward influence of a polymer additive on the Kolmogorov flow
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1093-1105A numerical method is proposed that approximates the equations of the dynamics of a weakly compressible viscous flow in the presence of a polymer component of the flow. The behavior of the flow under the influence of a static external periodic force in a periodic square cell is investigated. The methodology is based on a hybrid approach. The hydrodynamics of the flow is described by a system of Navier – Stokes equations and is numerically approximated by the linearized Godunov method. The polymer field is described by a system of equations for the vector of stretching of polymer molecules $\bf R$, which is numerically approximated by the Kurganov – Tedmor method. The choice of model relationships in the development of a numerical methodology and the selection of modeling parameters made it possible to qualitatively model and study the regime of elastic turbulence at low Reynolds $Re \sim 10^{-1}$. The polymer solution flow dynamics equations differ from the Newtonian fluid dynamics equations by the presence on the right side of the terms describing the forces acting on the polymer component part. The proportionality coefficient $A$ for these terms characterizes the backward influence degree of the polymers number on the flow. The article examines in detail how the flow and its characteristics change depending on the given coefficient. It is shown that with its growth, the flow becomes more chaotic. The flow energy spectra and the spectra of the polymers stretching field are constructed for different values of $A$. In the spectra, an inertial sub-range of the energy cascade is traced for the flow velocity with an indicator $k \sim −4$, for the cascade of polymer molecules stretches with an indicator $−1.6$.
-
Численное моделирование течения Колмогорова в вязких средах под действием периодической в пространстве статической силы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 741-753Основной особенностью двумерного турбулентного течения, постоянно возбуждаемого внешней силой, является возникновение обратного каскада энергии. За счет нелинейных эффектов пространственный масштаб вихрей, создаваемых внешней силой, увеличивается до тех пор, пока рост не будет остановлен размером ячейки. В последнем случае энергия накапливается на этом масштабе. При определенных условиях такое накопление энергии приводит к возникновению системы когерентных вихрей. Наблюдаемые вихри имеют размер ячейки и в среднем изотропны. Численное моделирование является эффективным способом изучения таких процессов. Особый интерес представляет задача исследования турбулентности вязкой жидкости в квадратной ячейке при возбуждении коротковолновой и длинноволновой статическими внешними силами. Численное моделирование проводилось со слабосжимаемой жидкостью в двумерной квадратной ячейке с нулевыми граничными условиями. В работе показано, как на характеристики течения влияет пространственная частота внешней силы, а также величина вязкости самой жидкости. Увеличение пространственной частоты внешней силы приводит к стабилизации и ламинаризации течения. В то же время при увеличении пространственной частоты внешней силы уменьшение вязкости приводит к возобновлению механизма переноса энергии по обратному каскаду за счет смещения области диссипации энергии в область меньших масштабов по сравнению с масштабом накачки.
Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.
-
Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.
В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.
Ключевые слова: конус Тейлора, схема МакКормака, слабосжимаемые жидкости, диэлектрическая проницаемость.
Development of the water – oil interface instability in a vertical electric field
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 633-645The presence of a contact boundary between water and transformer oil greatly reduces the electrical strength of the oil phase. The presence of an electric field leads to varying degrees of polarization at the interface and the appearance of a force acting on a liquid with a higher dielectric constant (water) in the direction of a liquid with a lower dielectric constant (oil). This leads to the contact surface instability development. Instability as a result of its development leads to a stream of water being drawn into oil volume and a violation of the insulating gap. In this work, we experimentally and numerically study electrohydrodynamic instability at the phase boundary between electrically weakly conductive water and transformer oil in a highly inhomogeneous electric field directed perpendicular to the contact boundary. The results of a full-scale and numerical experiment of studying of the electrohydrodynamic instability development in a strong electric field at the interface between water and transformer oil are presented. The system consists of a spherical electrode with a radius of 3.5 mm, placed in water with a conductivity of 5 $\mu S/cm$, and a thin blade electrode 0.1 mm thick, placed in transformer oil of the GK brand. The contact boundary passes at the same distance from the nearest points of the electrodes, equal to 3 mm. The work shows that at a certain electric field strength, the cone-shaped structure of water grows towards the electrode immersed in transformer oil. A numerical correspondence was obtained for both the shape of the resulting water structure (cone) during the entire growth time and the size measured from its top to the level of the initial contact boundary of phase separation. The dynamics of this structure growth has been studied. Both in numerical calculations and in experiment, it was found that the size of the resulting cone along the electrode connection line depends linearly on time.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"