All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 10.
- Views (last year): 18.
-
Анализ алгоритмов совместной глобальной локализации устройств смешанной реальности на основе регистрации облаков точек
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 657-674Современные подходы локализации и построения карты для устройств дополненной (AR) и смешанной (MR) реальности основаны на извлечении локальных признаков с камеры. Наряду с этим современные устройства AR/MR позволяют строить трехмерную сетку окружающего пространства. Однако существующие методы не решают задачу глобальной совместной локализации устройства из-за применения разных дескрипторов для вычисления признаков с изображений. Используя карту пространства из трехмерной сетки, мы можем решить проблему совместной глобальной локализации устройств AR/MR. Этот подход не зависит от типа дескрипторов функций и алгоритмов локализации и картографирования, используемых на борту устройства AR/MR. Сетку можно свести к облаку точек, которое состоит только из вершин сетки. Мы предлагаем подход для совместной локализации устройств AR/MR с использованием облаков точек, которые не зависят от алгоритмов на борту устройства. Мы проанализировали различные алгоритмы регистрации облаков точек и обсудили их ограничения для задачи совместной глобальной локализации устройств AR/MR в помещении.
Ключевые слова: совместная локализация, дополненная и смешанная реальность, регистрация облаков точек.
Analysis of mixed reality cross-device global localization algorithms based on point cloud registration
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 657-674State-of-the-art localization and mapping approaches for augmented (AR) and mixed (MR) reality devices are based on the extraction of local features from the camera. Along with this, modern AR/MR devices allow you to build a three-dimensional mesh of the surrounding space. However, the existing methods do not solve the problem of global device co-localization due to the use of different methods for extracting computer vision features. Using a space map from a 3D mesh, we can solve the problem of collaborative global localization of AR/MR devices. This approach is independent of the type of feature descriptors and localisation and mapping algorithms used onboard the AR/MR device. The mesh can be reduced to a point cloud, which consists of only the vertices of the mesh. We propose an approach for collaborative localization of AR/MR devices using point clouds that are independent of algorithms onboard the device. We have analyzed various point cloud registration algorithms and discussed their limitations for the problem of global co-localization of AR/MR devices indoors.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"