Результаты поиска по 'стохастическое уравнение':
Найдено статей: 32
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 455-457
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 695-696
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 695-696
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1217-1219
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1099-1101
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 821-823
  8. Строганов А.В., Аристов В.В.
    Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31

    Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.

    Stroganov A.V., Aristov V.V.
    Probabilistic aspects of “computer analogy” method for solving differential equations
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 21-31

    Method which allows to obtain explicit form of the solution as a part of power series of the argument step is developed. Formalization of characteristics of the algorithm analogous to operations of a computer is performed. The operation of transfer from one rank to another leads to a probability scheme of the algorithm that averages unknown intermediate steps in higher ranks of the series. The stochastic characteristics of the method are studied and illustrated. Examples of solving nonlinear equations and systems of nonlinear differential equations are presented.

    Views (last year): 3. Citations: 1 (RSCI).
  9. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Madera A.G.
    Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630

    A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.

    Views (last year): 3.
  10. Башкирцева И.А.
    Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571

    В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.

    Bashkirtseva I.A.
    Analysis of stochastically forced equilibria and noise-induced transitions in nonlinear discrete systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 559-571

    Stochastically forced discrete dynamical systems are considered. Using first approximation systems, we study dynamics of deviations of stochastic solutions from deterministic equilibria. Necessary and sufficient conditions of the existence of stable stationary solutions of equations for mean-square deviations are derived. Stationary values of these mean-square deviations are used for the estimations of the dispersion of random states nearby stable equilibria and analysis of noise-induced transitions. Constructive application of the suggested technique to the analysis of various stochastic regimes in Ricker population model with Allee effect is demonstrated.

    Views (last year): 1. Citations: 2 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"