All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.
Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.
Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.
В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.
Ключевые слова: задача выживаемости, терапия глиом, математическая модель гематоэнцефалического барьера.
Survival task for the mathematical model of glioma therapy with blood-brain barrier
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123Views (last year): 14.The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.
Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.
The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.
The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.
Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"