All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 36.
-
Особенности движения кинков ДНК при асинхронном включении/выключении постоянного и периодического полей
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 545-558Исследование влияния внешних полей на живые системы — одно их наиболее интересных и быстро развивающихся направлений современной биофизики. Однако механизмы такого воздействия до сих пор не совсем ясны. Один из подходов к изучению этого вопроса связывают с моделированием взаимодействия внешних полей с внутренней подвижностью биологических объектов. В настоящей работе этот подход применяется для исследования влияния внешних полей на движение локальных конформационных возмущений — кинков в молекуле ДНК. Понимая и учитывая, что в целом такая задача тесно связана с задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем, мы поставили задачу — исследовать физические механизмы, регулирующие движение кинков, а также ответить на вопрос, могут ли постоянные и периодические поля выступать в роли регуляторов этого движения. В работе рассматривается самый общий случай, когда постоянные и периодические поля включаются и выключаются асинхронно. Детально исследованы три варианта асинхронного включения/выключения. В первом варианте интервалы (или диапазоны) действия постоянного и периодического полей не перекрываются, во втором — перекрываются, а третьем — интервалы вложены друг в друга. Расчеты выполнялись для последовательности плазмиды pTTQ18. Движение кинков моделировалось уравнением МакЛафлина–Скотта, а коэффициенты этого уравнения рассчитывались в квазиоднородном приближении. Численные эксперименты показали, что постоянные и периодические поля оказывают существенное влияние на характер движения кинка и регулируют его. Так, включение постоянного поля приводит к быстрому увеличению скорости кинка и установлению стационарной скорости движения, а включение периодического поля приводит к установившимся колебаниям кинка с частотой внешнего периодического поля. Показано, что поведение кинка зависит от взаимного расположения диапазонов действия внешних полей. Причем, как оказалось, события, происходящие в одном диапазоне, могут оказывать влияние на события в другом временном диапазоне даже в том случае, когда диапазоны расположены достаточно далеко друг от друга. Показано, что перекрывание диапазонов действия постоянного и периодического полей приводит к значительному увеличению пути, проходимому кинком до полной остановки. Максимальный рост пути наблюдается в случае вложенных друг в друга диапазонов. В заключении обсуждается вопрос о том, как полученные модельные результаты могут быть связаны с важнейшей задачей биологии — задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем.
Ключевые слова: уравнение МакЛафлина–Скотта, кинки ДНК, действие внешних полей, асинхронное включение/выключение.
Features of the DNA kink motion in the asynchronous switching on and off of the constant and periodic fields
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 545-558Views (last year): 29. Citations: 1 (RSCI).Investigation of the influence of external fields on living systems is one of the most interesting and rapidly developing areas of modern biophysics. However, the mechanisms of such an impact are still not entirely clear. One approach to the study of this issue is associated with modeling the interaction of external fields with internal mobility of biological objects. In this paper, this approach is used to study the effect of external fields on the motion of local conformational distortions — kinks, in the DNA molecule. Realizing and taking into account that on the whole this task is closely connected with the problem of the mechanisms of regulation of vital processes of cells and cellular systems, we set the problem — to investigate the physical mechanisms regulating the motion of kinks and also to answer the question whether permanent and periodic fields can play the role of regulators of this movement. The paper considers the most general case, when constant and periodic fields are switching on and off asynchronously. Three variants of asynchronous switching on/off are studied in detail. In the first variant, the time intervals (or diapasons) of the actions of the constant and periodic fields do not overlap, in the second — overlap, and in the third — the intervals are putting in each other. The calculations were performed for the sequence of plasmid pTTQ18. The kink motion was modeled by the McLaughlin–Scott equation, and the coefficients of the equation were calculated in a quasi-homogeneous approximation. Numerical experiments showed that constant and periodic fields exert a significant influence on the character of the kink motion and regulate it. So the switching on of a constant field leads to a rapid increase of the kink velocity and to the establishment of a stationary velocity of motion, and the switching on of a periodic field leads to the steady oscillations of the kink with the frequency of the external periodic field. It is shown that the behavior of the kink depends on the mutual arrangement of the diapasons of the action of the external fields. As it turned out, events occurring in one of the two diapasons can affect the events in the other diapason, even when the diapasons are sufficiently far apart. It is shown that the overlapping of the diapasons of action of the constant and periodic fields leads to a significant increase in the path traversed by the kink to a complete stop. Maximal growth of the path is observed when one diapason is putting in each other. In conclusion, the question of how the obtained model results could be related to the most important task of biology — the problem of the mechanisms of regulation of the processes of vital activity of cells and cellular systems is discussed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"