All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Ускорение работы двухстадийной модели равновесного распределения потоков по сети
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 343-355В работе приведены возможные улучшения двухстадийной модели равновесного распределения транспортных потоков, повышающие качество детализации моделирования и скорость вычисления алгоритмов. Модель состоит из двух блоков, первый блок — модель расчета матрицы корреспонденций, второй блок — модель равновесного распределения транспортных потоков по путям. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Более подробно теория и эксперименты по данной модели были описаны в предыдущих работах авторов. В этой статье в первую очередь рассмотрена возможность сокращения вычислительного времени алгоритма расчета кратчайших путей (в модели стабильной динамики, равновесно распределяющей потоки). В исходном варианте эта задача была выполнена с помощью алгоритма Дийкстры, но, так как после каждой итерации блока распределения транспортных потоков, время, требующееся для прохода по ребру, изменяется не на всех ребрах (и если изменяется, то очень незначительно), во многом этот алгоритм был избыточен. Поэтому были проведены эксперименты с более новым методом, учитывающим подобные особенности, и приведен краткий обзор других ускоряющих подходов для будущих исследований. Эксперименты показали, что в некоторых случаях использование выбранного T-SWSF-алгоритма действительно сокращает вычислительное время. Во вторую очередь в блоке восстановления матрицы корреспонденций алгоритм Синхорна был заменен на алгоритм ускоренного Синхорна (или AAM-алгоритм), что, к сожалению, не показало ожидаемых результатов, расчетное время не изменилось. Инак онец, в третьем и финальном разделе приведена визуализация результатов экспериментов по добавлению платных дорог в двухстадийную модель, что помогло сократить количество перегруженных ребер в сети. Также во введении кратко описана мотивация данных исследований, приведено описание работы двухстадийной модели, а также на маленьком примере с двумя городами разобрано, как с ее помощью выполняется поиск равновесия.
Ключевые слова: модель расчета матрицы корреспонденций, многостадийная модель, модель равновесного распределения потоков по путям.
Speeding up the two-stage simultaneous traffic assignment model
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 343-355This article describes possible improvements for the simultaneous multi-stage transport model code for speeding up computations and improving the model detailing. The model consists of two blocks, where the first block is intended to calculate the correspondence matrix, and the second block computes the equilibrium distribution of traffic flows along the routes. The first block uses a matrix of transport costs that calculates a matrix of correspondences. It describes the costs (time in our case) of travel from one area to another. The second block presents how exactly the drivers (agents) are distributed along the possible paths. So, knowing the distribution of the flows along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage traffic flow model is a fixed point of a sequence of the two described models. Thus, in this paper we report an attempt to influence the calculation speed of Dijkstra’s algorithm part of the model. It is used to calculate the shortest path from one point to another, which should be re-calculated after each iteration of the flow distribution part. We also study and implement the road pricing in the model code, as well as we replace the Sinkhorn algorithm in the calculation of the correspondence matrix part with its faster implementation. In the beginning of the paper, we provide a short theoretical overview of the transport modelling motivation; we discuss current approaches to the modelling and provide an example for demonstration of how the whole cycle of multi-stage transport modelling works.
-
Тензорные методы внутри смешанного оракула для решения задач типа min-min
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 377-398В данной статье рассматривается задача типа min-min: минимизация по двум группам переменных. Данная задача в чем-то похожа на седловую (min-max), однако лишена некоторых сложностей, присущих седловым задачам. Такого рода постановки могут возникать, если в задаче выпуклой оптимизации присутствуют переменные разных размерностей или если какие-то группы переменных определены на разных множествах. Подобная структурная особенность проблемы дает возможность разбивать ее на подзадачи, что позволяет решать всю задачу с помощью различных смешанных оракулов. Ранее в качестве возможных методов для решения внутренней или внешней задачи использовались только методы первого порядка или методы типа эллипсоидов. В нашей работе мы рассматриваем данный подход с точки зрения возможности применения алгоритмов высокого порядка (тензорных методов) для решения внутренней подзадачи. Для решения внешней подзадачи мы используем быстрый градиентный метод.
Мы предполагаем, что внешняя подзадача определена на выпуклом компакте, в то время как для внутренней задачи мы отдельно рассматриваем задачу без ограничений и определенную на выпуклом компакте. В связи с тем, что тензорные методы по определению используют производные высокого порядка, время на выполнение одной итерации сильно зависит от размерности решаемой проблемы. Поэтому мы накладываем еще одно условие на внутреннюю подзадачу: ее размерность не должна превышать 1000. Для возможности использования смешанного оракула намнео бходимы некоторые дополнительные предположения. Во-первых, нужно, чтобы целевой функционал был выпуклымпо совокупности переменных и чтобы его градиент удовлетворял условию Липшица также по совокупности переменных. Во-вторых, нам необходимо, чтобы целевой функционал был сильно выпуклый по внутренней переменной и его градиент по внутренней переменной удовлетворял условию Липшица. Также для применения тензорного метода нам необходимо выполнение условия Липшица p-го порядка ($p > 1$). Наконец, мы предполагаем сильную выпуклость целевого функционала по внешней переменной, чтобы иметь возможность использовать быстрый градиентный метод для сильно выпуклых функций.
Стоит отметить, что в качестве метода для решения внутренней подзадачи при отсутствии ограничений мы используем супербыстрый тензорный метод. При решении внутренней подзадачи на компакте используется ускоренный проксимальный тензорный метод для задачи с композитом.
В конце статьи мы также сравниваем теоретические оценки сложности полученных алгоритмов с быстрым градиентным методом, который не учитывает структуру задачи и решает ее как обычную задачу выпуклой оптимизации (замечания 1 и 2).
Ключевые слова: тензорные методы, гладкость высокого порядка, сильная выпуклость, смешанный оракул, неточный оракул.
Tensor methods inside mixed oracle for min-min problems
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 377-398In this article we consider min-min type of problems or minimization by two groups of variables. In some way it is similar to classic min-max saddle point problem. Although, saddle point problems are usually more difficult in some way. Min-min problems may occur in case if some groups of variables in convex optimization have different dimensions or if these groups have different domains. Such problem structure gives us an ability to split the main task to subproblems, and allows to tackle it with mixed oracles. However existing articles on this topic cover only zeroth and first order oracles, in our work we consider high-order tensor methods to solve inner problem and fast gradient method to solve outer problem.
We assume, that outer problem is constrained to some convex compact set, and for the inner problem we consider both unconstrained case and being constrained to some convex compact set. By definition, tensor methods use high-order derivatives, so the time per single iteration of the method depends a lot on the dimensionality of the problem it solves. Therefore, we suggest, that the dimension of the inner problem variable is not greater than 1000. Additionally, we need some specific assumptions to be able to use mixed oracles. Firstly, we assume, that the objective is convex in both groups of variables and its gradient by both variables is Lipschitz continuous. Secondly, we assume the inner problem is strongly convex and its gradient is Lipschitz continuous. Also, since we are going to use tensor methods for inner problem, we need it to be p-th order Lipschitz continuous ($p > 1$). Finally, we assume strong convexity of the outer problem to be able to use fast gradient method for strongly convex functions.
We need to emphasize, that we use superfast tensor method to tackle inner subproblem in unconstrained case. And when we solve inner problem on compact set, we use accelerated high-order composite proximal method.
Additionally, in the end of the article we compare the theoretical complexity of obtained methods with regular gradient method, which solves the mentioned problem as regular convex optimization problem and doesn’t take into account its structure (Remarks 1 and 2).
-
Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.
Ключевые слова: обратные задачи, выпуклая оптимизация, оптимизация в гильбертовом пространстве, методы первого порядка, быстрые градиентные методы, неточный оракул.
Application of gradient optimization methods to solve the Cauchy problem for the Helmholtz equation
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 417-444The article is devoted to studying the application of convex optimization methods to solve the Cauchy problem for the Helmholtz equation, which is ill-posed since the equation belongs to the elliptic type. The Cauchy problem is formulated as an inverse problem and is reduced to a convex optimization problem in a Hilbert space. The functional to be optimized and its gradient are calculated using the solution of boundary value problems, which, in turn, are well-posed and can be approximately solved by standard numerical methods, such as finite-difference schemes and Fourier series expansions. The convergence of the applied fast gradient method and the quality of the solution obtained in this way are experimentally investigated. The experiment shows that the accelerated gradient method — the Similar Triangle Method — converges faster than the non-accelerated method. Theorems on the computational complexity of the resulting algorithms are formulated and proved. It is found that Fourier’s series expansions are better than finite-difference schemes in terms of the speed of calculations and improve the quality of the solution obtained. An attempt was made to use restarts of the Similar Triangle Method after halving the residual of the functional. In this case, the convergence does not improve, which confirms the absence of strong convexity. The experiments show that the inaccuracy of the calculations is more adequately described by the additive concept of the noise in the first-order oracle. This factor limits the achievable quality of the solution, but the error does not accumulate. According to the results obtained, the use of accelerated gradient optimization methods can be the way to solve inverse problems effectively.
-
Об ускоренных методах для седловых задач с композитной структурой
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 433-467В данной работе рассматриваются сильно-выпукло сильно-вогнутые не билинейные седловые задачи с разными числами обусловленности по прямым и двойственным переменным. Во-первых, мы рассматриваем задачи с гладкими композитами, один из которых имеет структуру с конечной суммой. Для этой задачи мы предлагаем алгоритм уменьшения дисперсии с оценками сложности, превосходящими существующие ограничения в литературе. Во-вторых, мы рассматриваем седловые задачи конечной суммы с композитами и предлагаем несколько алгоритмов в зависимости от свойств составных членов. Когда составные члены являются гладкими, мы получаем лучшие оценки сложности, чем в литературе, включая оценки недавно предложенных почти оптимальных алгоритмов, которые не учитывают составную структуру задачи. Кроме того, наши алгоритмы позволяют разделить сложность, т. е. оценить для каждой функции в задаче количество вызовов оракула, достаточное для достижения заданной точности. Это важно, так как разные функции могут иметь разную арифметическую сложность оракула, а дорогие оракулы желательно вызывать реже, чем дешевые. Ключевым моментом во всех этих результатах является наша общая схема для седловых задач, которая может представлять самостоятельный интерес. Эта структура, в свою очередь, основана на предложенном нами ускоренном мета-алгоритме для композитной оптимизации с вероятностными неточными оракулами и вероятностной неточностью в проксимальном отображении, которые также могут представлять самостоятельный интерес.
Ключевые слова: седловая задача, минимаксная оптимизация, композитная оптимизация, ускоренные алгоритмы.
On Accelerated Methods for Saddle-Point Problems with Composite Structure
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 433-467We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear objective and different condition numbers with respect to the primal and dual variables. First, we consider such problems with smooth composite terms, one of which has finite-sum structure. For this setting we propose a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature. Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms depending on the properties of the composite terms. When the composite terms are smooth we obtain better complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal algorithms which do not consider the composite structure of the problem. If the composite terms are prox-friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity bounds to the nearly-optimal algorithm which is designed for noncomposite setting. Besides, our algorithms allow one to separate the complexity bounds, i. e. estimate, for each part of the objective separately, the number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal mapping, which may be of independent interest as well.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Реализация алгоритмов межатомного взаимодействия с использованием технологии OpenCL
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 549-558Моделирование углеродных наноструктур методом классической молекулярной динамики требует больших объемов вычислений. Один из способов повышения производительности соответствующих алгоритмов состоит в их адаптации для работы с SIMD-подобными архитектурами, в частности, с графическими процессорами. В данной работе рассмотрены особенности алгоритмов вычисления многочастичного взаимодействия на основе классических потенциалов Терсоффа и погруженного атома с использованием технологии OpenCL. Стандарт OpenCL позволяет обеспечить универсальность и переносимость алгоритмов и может быть эффективно использован для гетерогенных вычислений. В данной работе сделана оценка производительности OpenCL алгоритмов вычисления межатомного взаимодействия для систем на базе центральных и графических процессоров. Показано, что использование атомарных операций эффективно для вычисления потенциала Терсоффа и неэффективно в случае потенциала погруженного атома. Оценка производительности показывает значительное ускорение GPU реализации алгоритмов вычисления потенциалов межатомного взаимодействия по сравнению с соответствующими однопоточными алгоритмами.
Ключевые слова: GPGPU, OpenCL, многочастичные потенциалы взаимодействия, потенциал Терсоффа, потенциал погруженного атома, атомарные операции.
OpenCL realization of some many-body potentials
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 549-558Views (last year): 4. Citations: 1 (RSCI).Modeling of carbon nanostructures by means of classical molecular dynamics requires a lot of computations. One of the ways to improve the performance of basic algorithms is to transform them for running on SIMD-type computing systems such as systems with dedicated GPU. In this work we describe the development of algorithms for computation of many-body interaction based on Tersoff and embedded-atom potentials by means of OpenCL technology. OpenCL standard provides universality and portability of the algorithms and can be successfully used for development of the software for heterogeneous computing systems. The performance of algorithms is evaluated on CPU and GPU hardware platforms. It is shown that concurrent memory writes is effective for Tersoff bond order potential. The same approach for embedded-atom potential is shown to be slower than algorithm without concurrent memory access. Performance evaluation shows a significant GPU acceleration of energy-force evaluation algorithms for many-body potentials in comparison to the corresponding serial implementations.
-
Параллельное представление локального элиминационного алгоритма для ускорения решения разреженных задач дискретной оптимизации
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 699-705Алгоритмы декомпозиции являются методами решения NP-трудных задач дискретной оптимизации (ДО). В этой статье демонстрируется один из перспективных методов, использующих разреженность матриц, — локальной элиминационный алгоритм в параллельной интерпретации (ЛЭАП). Это алгоритм структурной из декомпозиции на основе графа, который позволяет найти решение поэтапно таким образом, что каждый последующих этапов использует результаты предыдущих этапов. В то же время ЛЭАП сильно зависит от порядка элиминации, который фактически является стадиями решения. Также в статье рассматриваются древовидный и блочный тип распараллеливания для ЛЭАП и необходимые процессы их реализации.
Ключевые слова: дискретная оптимизация, добровольные вычисления, локальный элиминационный алгоритм, параллельные вычисления, разреженные задачи, элиминационное дерево.
Parallel representation of local elimination algorithm for accelerating the solving sparse discrete optimization problems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 699-705Views (last year): 1.The decomposition algorithms provide approaches to deal with NP-hardness in solving discrete optimization problems (DOPs). In this article one of the promising ways to exploit sparse matrices — local elimination algorithm in parallel interpretation (LEAP) are demonstrated. That is a graph-based structural decomposition algorithm, which allows to compute a solution in stages such that each of them uses results from previous stages. At the same time LEAP heavily depends on elimination ordering which actually provides solving stages. Also paper considers tree- and block-parallel for LEAP and required realization process of it comparison of a several heuristics for obtaining a better elimination order and shows how is related graph structure, elimination ordering and solving time.
-
Предварительная декомпозиция задач дискретной оптимизации для ускорения алгоритма ветвей и границ в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 719-725В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.
Ключевые слова: метод ветвей и границ, крупнозернистый параллелизм.
Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.
Keywords: branch and bound algorithm, coarse grained parallelism.Views (last year): 2. Citations: 2 (RSCI).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"