All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Реализация алгоритмов межатомного взаимодействия с использованием технологии OpenCL
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 549-558Моделирование углеродных наноструктур методом классической молекулярной динамики требует больших объемов вычислений. Один из способов повышения производительности соответствующих алгоритмов состоит в их адаптации для работы с SIMD-подобными архитектурами, в частности, с графическими процессорами. В данной работе рассмотрены особенности алгоритмов вычисления многочастичного взаимодействия на основе классических потенциалов Терсоффа и погруженного атома с использованием технологии OpenCL. Стандарт OpenCL позволяет обеспечить универсальность и переносимость алгоритмов и может быть эффективно использован для гетерогенных вычислений. В данной работе сделана оценка производительности OpenCL алгоритмов вычисления межатомного взаимодействия для систем на базе центральных и графических процессоров. Показано, что использование атомарных операций эффективно для вычисления потенциала Терсоффа и неэффективно в случае потенциала погруженного атома. Оценка производительности показывает значительное ускорение GPU реализации алгоритмов вычисления потенциалов межатомного взаимодействия по сравнению с соответствующими однопоточными алгоритмами.
Ключевые слова: GPGPU, OpenCL, многочастичные потенциалы взаимодействия, потенциал Терсоффа, потенциал погруженного атома, атомарные операции.
OpenCL realization of some many-body potentials
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 549-558Views (last year): 4. Citations: 1 (RSCI).Modeling of carbon nanostructures by means of classical molecular dynamics requires a lot of computations. One of the ways to improve the performance of basic algorithms is to transform them for running on SIMD-type computing systems such as systems with dedicated GPU. In this work we describe the development of algorithms for computation of many-body interaction based on Tersoff and embedded-atom potentials by means of OpenCL technology. OpenCL standard provides universality and portability of the algorithms and can be successfully used for development of the software for heterogeneous computing systems. The performance of algorithms is evaluated on CPU and GPU hardware platforms. It is shown that concurrent memory writes is effective for Tersoff bond order potential. The same approach for embedded-atom potential is shown to be slower than algorithm without concurrent memory access. Performance evaluation shows a significant GPU acceleration of energy-force evaluation algorithms for many-body potentials in comparison to the corresponding serial implementations.
-
Параллельное представление локального элиминационного алгоритма для ускорения решения разреженных задач дискретной оптимизации
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 699-705Алгоритмы декомпозиции являются методами решения NP-трудных задач дискретной оптимизации (ДО). В этой статье демонстрируется один из перспективных методов, использующих разреженность матриц, — локальной элиминационный алгоритм в параллельной интерпретации (ЛЭАП). Это алгоритм структурной из декомпозиции на основе графа, который позволяет найти решение поэтапно таким образом, что каждый последующих этапов использует результаты предыдущих этапов. В то же время ЛЭАП сильно зависит от порядка элиминации, который фактически является стадиями решения. Также в статье рассматриваются древовидный и блочный тип распараллеливания для ЛЭАП и необходимые процессы их реализации.
Ключевые слова: дискретная оптимизация, добровольные вычисления, локальный элиминационный алгоритм, параллельные вычисления, разреженные задачи, элиминационное дерево.
Parallel representation of local elimination algorithm for accelerating the solving sparse discrete optimization problems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 699-705Views (last year): 1.The decomposition algorithms provide approaches to deal with NP-hardness in solving discrete optimization problems (DOPs). In this article one of the promising ways to exploit sparse matrices — local elimination algorithm in parallel interpretation (LEAP) are demonstrated. That is a graph-based structural decomposition algorithm, which allows to compute a solution in stages such that each of them uses results from previous stages. At the same time LEAP heavily depends on elimination ordering which actually provides solving stages. Also paper considers tree- and block-parallel for LEAP and required realization process of it comparison of a several heuristics for obtaining a better elimination order and shows how is related graph structure, elimination ordering and solving time.
-
Предварительная декомпозиция задач дискретной оптимизации для ускорения алгоритма ветвей и границ в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 719-725В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.
Ключевые слова: метод ветвей и границ, крупнозернистый параллелизм.
Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.
Keywords: branch and bound algorithm, coarse grained parallelism.Views (last year): 2. Citations: 2 (RSCI).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"