All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 6.
-
Движение влекомых наносов над периодическим дном
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 47-60Движение влекомых наносов по дну напорного канала может приводить к потере устойчивости донной поверхности, когда на дне канала возникают донные волны. Исследование процесса развития донных волн связано с возможностью определения характера движения влекомых наносов по дну периодической формы. Несмотря на большое внимание многих исследователей к данной проблеме, вопрос о развитии процесса донных волн остается открытым и в настоящее время. В значительной мере это связано с тем, что при анализе данного процесса многие исследователи используют в своих работах феноменологические формулы движения влекомых наносов. Полученные в таких моделях результаты позволяют лишь качественно оценить процесс развития донных волн. По этой причине представляет интерес проведение анализа развития донных волн с использованием аналитической модели движения влекомых наносов.
В работе предложена двумерная профильная математическая русловая модель, позволяющая исследовать движение влекомых наносов над периодическим дном. Особенностью математической модели является возможность расчета расхода влекомых наносов по аналитической модели с реологией Кулона–Прандтля, учитывающей влияние уклонов поверхности дна, придонных нормальных и касательных напряжений на процесс движения донного материала. Показано, что при движении донного материла по дну периодической формы диффузионные и напорные расходы влекомых наносов являются разнонаправленными и доминирующими по отношению к транзитному расходу. Изучались влияния параметра перекошенности донной волны на вклад транзитного, диффузионного и напорного расходов в полный расход влекомых наносов. Выполнено сравнение полученных результатов с численными решениями других авторов для донной поверхности косинусоидальной формы.
Ключевые слова: математическое моделирование, напорный канал, донные волны, влекомые наносы, расход влекомых наносов.
Movement of sediment over periodic bed
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 47-60Views (last year): 9.The movement of bed load along the closed conduit can lead to a loss of stability of the bed surface, when bed waves arise at the bed of the channel. Investigation of the development of bed waves is associated with the possibility of determining of the bed load nature along the bed of the periodic form. Despite the great attention of many researchers to this problem, the question of the development of bed waves remains open at the present time. This is due to the fact that in the analysis of this process many researchers use phenomenological formulas for sediment transport in their work. The results obtained in such models allow only assess qualitatly the development of bed waves. For this reason, it is of interest to carry out an analysis of the development of bed waves using the analytical model for sediment transport.
The paper proposed two-dimensional profile mathematical riverbed model, which allows to investigate the movement of sediment over a periodic bed. A feature of the mathematical model is the possibility of calculating the bed load transport according to an analytical model with the Coulomb–Prandtl rheology, which takes into account the influence of bottom surface slopes, bed normal and tangential stresses on the movement of bed material. It is shown that when the bed material moves along the bed of periodic form, the diffusion and pressure transport of bed load are multidirectional and dominant with respect to the transit flow. Influence of the effects of changes in wave shape on the contribution of transit, diffusion and pressure transport to the total sediment transport has been studied. Comparison of the received results with numerical solutions of the other authors has shown their good qualitative initiation.
-
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
Bottom stability in closed conduits
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068Views (last year): 1. Citations: 2 (RSCI).In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.
-
Исследование процесса роста амплитуды донных волн в реках и каналах
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1339-1347Работа является теоретическим исследованием процесса развития донной неустойчивости в реках и каналах. На основе аналитической модели расхода влекомых наносов, учитывающей влияние уклонов донной поверхности, придонного давления и касательного напряжения на движение донного материала и аналитического решения, позволяющего определять придонные касательные и нормальные напряжения, возникающие при обтекании турбулентным потоком периодических длинных донных волн малой крутизны, сформулирована и решена задача определения скорости роста амплитуды для растущих донных волн. Полученное решение задачи позволяет определить характерное время роста донной волны, скорость роста донной волны и ее максимальную амплитуду в зависимости от физических и гранулометрических характеристик донного материала и гидравлических параметров водного потока. На примере развития периодической синусоидальной донной волны малой крутизны выполнена верификация решения, полученного для сформулированной задачи. Полученное аналитическое решение задачи позволяет определить скорость роста амплитуды донной волны от текущего значения ее амплитуды. Сравнение полученного решения с экспериментальными данными показало их хорошее качественное и количественное согласование.
Ключевые слова: донные волны, амплитуда донных волн, устойчивость донной поверхности, расход влекомых наносов.
Investigation of the process of growth of the amplitude of bed waves in rivers and channels
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1339-1347The work is a theoretical study of the development of bottom instability in rivers and canals. Based on an analytical model of the load of sediment, taking into account the influence of slopes of the bottom surface, bottom pressure and shear stress on the movement of the bottom material and an analytical solution that allows to determine bottom tangential and normal stresses over the periodic bottom, the problem of determining the amplitude growth rate for growing bottom waves is formulated and solved . The obtained solution of the problem allows us to determine the characteristic time of the growth of the bottom wave, the growth rate of the bottom wave and its maximum amplitude, depending on the physical and particle size characteristics of the bottom material and the hydraulic parameters of the water flow. On the example of the development of a periodic sinusoidal bottom wave of low steepness, the verification of the solution obtained for the formulated problem is carried out. The obtained analytical solution to the problem allows us to determine the growth rate of the amplitude of the bottom wave from the current value of its amplitude. Comparison of the obtained solution with experimental data showed their good qualitative and quantitative agreement.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"