All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 3.
-
Оптимизация судовых обводов для снижения сопротивления движению
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 57-65Оптимизация судовых обводов для снижения сопротивления движению является актуальной задачей гидродинамики судна. Однако вопросы проектирования и совершенствования обводов в современной практике все еще слабо обобщены и формализованы. Они решаются с помощью комбинации научных знаний, инженерного опыта и критериев из области искусства. Практическое использование экспериментального и численного моделирования в задачах оптимизации формы корпуса обычно сводится к методу проб и ошибок. В статье представлен новый метод оптимизации обводов, предназначенный для детального совершенствования формы корпуса, концепция которого использует теоретические закономерности формирования волновой системы судна. Метод предусматривает систематическое варьирование продольного распределения полноты корпуса при фиксации или контроле ее вертикального распределения. Как известно, вертикальное распределение водоизмещения не имеет оптимума по волновому сопротивлению, которое является основным активным компонентом, особенно в отношении формы носовой части. Варьирование продольного распределения водоизмещения предусмотрено путем задания конечных приращений водоизмещения на строевой по шпангоутам, которые затем переносятся на теоретический чертеж с помощью специальных методов трансформации шпангоутов и реализуются в 3D-моделях корпуса. Для оценки влияния модификаций геометрии на сопротивление используется численное моделирование буксировки полученных моделей. Дальнейшие оптимизационные процедуры базируются на выдвинутой гипотезе о независимости влияния различных участков корпуса, выделенных по длине, на буксировочное сопротивление. В результате применения метода к форме корпуса хорошо известного судна KCS, рекомендованного конференцией «Гетеборг-2000» в качестве эталонного объекта для тестирования численных методов, получены оптимальное продольное распределение полноты и соответствующие обводы корпуса, которые позволили снизить его сопротивление на 8.9 %. Оптимизация выполнена на базе результатов по шести моделям с вариациями формы, которые обусловили колебания полного сопротивления корпуса разного знака, величиной 1.3–6.5 %. Визуализация волновых систем показала, что при снижении сопротивления происходит заметное ослабление поперечных волн и усиление расходящихся.
Ключевые слова: моделирование обтекания корпуса, оптимизация судовых обводов, численное моделирование буксировки.
Optimization of a hull form for decrease ship resistance to movement
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 57-65Views (last year): 10. Citations: 1 (RSCI).Optimization of hull lines for the minimum resistance to movement is a problem of current interest in ship hydrodynamics. In practice, lines design is still to some extent an art. The usual approaches to decrease the ship resistance are based on the model experiment and/or CFD simulation, following the trial and error method. The paper presents a new method of in-detail hull form design based on the wave-based optimization approach. The method provides systematic variation of the hull geometrical form, which corresponds to alteration of longitudinal distribution of the hull volume, while its vertical volume distribution is fixed or highly controlled. It’s well known from the theoretical studies that the vertical distribution can't be optimized by condition of minimum wave resistance, thus it can be neglected for the optimization procedures. The method efficiency was investigated by application to the foreship of KCS, the well-known test object from the workshop Gothenburg-2000. The variations of the longitudinal distribution of the volume were set on the sectional area curve as finite volume increments and then transferred to the lines plan with the help of special frame transformation methods. The CFD towing simulations were carried out for the initial hull form and the six modified variants. According to the simulation results, examined modifications caused the resistance increments in the range 1.3–6.5 %. Optimization process was underpinned with the respective data analysis based on the new hypothesis, according to which, the resistance increments caused by separate longitudinal segments of hull form meet the principle of superposition. The achieved results, which are presented as the optimum distribution of volume present in the optimized designed hull form, which shows the interesting characteristics that its resistance has decrease by 8.9 % in respect to initial KCS hull form. Visualization of the wave patterns showed an attenuation of the transversal wave components, and the intensification of the diverging wave components.
-
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
Ключевые слова: нейронечеткая модель, нечеткая нейронная сеть, нечетко-продукционное правило, формирование базы знаний, оценка состояния объекта.
Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492Views (last year): 12.This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.
-
Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.
Ключевые слова: экспертная система, извлечение знаний, лингвистическая переменная, степень принадлежности, нечеткое правило.
Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"