All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.
Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.
В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.
• В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.
• В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.
• Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.
• Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.
Ключевые слова: броуновское движение, процесс Пуассона, биномиальная модель, стохастическое уравнение, дисконтированная цена, мартингал.
Connection between discrete financial models and continuous models with Wiener and Poisson processes
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.
• In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.
• In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.
• The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.
• The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.
-
Вероятностно-статистическая модель страхового капитала
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 231-235Обоснована необходимость введения в научный оборот новой экономической категории – страховой капитал. Показано, что страховая деятельность порождает специальную разновидность капитала (как фактора производства) – гарантийный фонд, который назван автором «основной денежный страховой капитал». Установлено, что наряду с общепринятыми свойствами капитала как фактора производства страховой капитал обладает рядом специфических свойств, обусловленных его вероятностно-статистической природой. На основе вероятностно-статистической модели исследована роль страхового капитала в формировании цены на страховую услугу. В частности, показано, что закон убывающей отдачи для страхового капитала не носит универсального характера.
Ключевые слова: страховой капитал, закон убывающей отдачи.
Probabilistic-statistical model of insurance capital
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 231-235The article reveals the necessity of introduction of new economic category such as “insurance capital”. Insurance activity generates a specific kind of capital (as a production factor) – the guarantee fund, which is called “primary insurance monetary capital". The article establishes that, due to its probabilistic and statistical nature, the insurance capital has a number of specific features in addition to conventional characteristics of capital as a production factor. Basing on probabilistic-statistical model author investigates the role of insurance capital in the formation of price for insurance services. In particular, the author exposes that the law of diminishing returns is not universal when talking about insurance capital.
Keywords: insurance capital, law of diminishing returns.Views (last year): 1. Citations: 2 (RSCI). -
Моделирование поведения опционов. Формулировка проблемы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 759-766Объектом исследований является создание алгоритма для расчета цен большого числа опционов с целью формирования безрискового портфеля. Метод базируется на обобщении подхода Блэка–Шоулза. Задача состоит в моделировании поведения всех опционов, а также инструментов их страхования. Для данной задачи характерен большой объем параллельных вычислений, которые требуется производить в режиме реального времени. Проблематика исследования: в зависимости от исходных данных используются разные подходы к решению. Существует три метода, которые могут использоваться при разных условиях: конечно-разностный метод, метод функционального интегрирования и метод, который связан с остановкой торгов на рынке. Распределенные вычисления в каждом из этих случаев организуются по- разному и требуют использования различных подходов. Сложность задачи также связана с тем, что в литературе ее математическая постановка не является корректной. Отсутствует полное описание граничных и начальных условий, а также некоторые предположения, лежащие в основе модели, не соответствуют реальным условиям рынка. Необходимо дать математически корректную постановку задачи и убрать несоответствие между предположениями модели и реальным рынком. Для этих целей необходимо расширить стандартную постановку за счет дополнительных методов и улучшить методы реализации для каждого направления решения задачи.
Ключевые слова: финансовая математика, ценообразование опционов, азиатский опцион, корректная постановка, граничные условия.
Modeling of behavior of the option. The formulation of the problem
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 759-766Views (last year): 2. Citations: 1 (RSCI).Object of research: The creation of algorithm for mass computations of options‘ price for formation of a riskless portfolio. The method is based on the generalization of the Black–Scholes method. The task is the modeling of behavior of all options and tools for their insurance. This task is characterized by large volume of realtime complex computations that should be executed concurrently The problem of the research: depending on conditions approaches to the solution should be various. There are three methods which can be used with different conditions: the finite difference method, the path-integral approach and methods which work in conditions of trade stop. Distributed computating in these three cases is organized differently and it is necessary to involve various approaches. In addition to complexity the mathematical formulation of the problem in literature is not quite correct. There is no complete description of boundary and initial conditions and also several hypotheses of the model do not correspond to real market. It is necessary to give mathematically correct formulation of the task, and to neutralize a difference between hypotheses of the model and their prototypes in the market. For this purpose it is necessary to expand standard formulation by additional methods and develop methods of realization for each of solution branches.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"