All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
Ключевые слова: методы машинного обучения, устойчивое развитие, Арктическая зона РФ, экономические критерии, Полярный индекс компаний.
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
-
Нечеткое моделирование механизма передачи панического состояния среди людей с различными видами темперамента
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1079-1092Массовое скопление людей всегда представляет собой потенциальную опасность и угрозу для их жизни. К тому же ежегодно в мире в давке, основной причиной которой является массовая паника, гибнет очень большое количество людей. Поэтому изучение феномена массовой паники, ввиду ее чрезвычайной социальной опасности, представляет собой важную научную задачу. Имеющаяся информация о процессах ее возникновения и распространения относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели механизма передачи панического состояния среди людей с различными видами темперамента выбрана теория нечетких множеств.
При разработке нечеткой модели было сделано предположение о том, что паника, из эпицентра шокирующего стимула, распространяется среди людей по волновому принципу, проходя с различной частотой через разные среды (виды темперамента человека), и определяется скоростью и интенсивностью циркулярной реакции механизма передачи панического состояния. Поэтому разработанная нечеткая модель, наряду с двумя входами, имеет два выхода — скорость и интенсивность циркулярной реакции. В блоке «Фаззификация» вычисляются степени принадлежности числовых значений входных параметров (частоты волны распространения паники и восприимчивости человека к паническим ситуациям) к нечетким множествам. Блок «Вывод» на входе получает степени принадлежности для каждого входного параметра и на выходе определяет результирующую функцию принадлежности скорости циркулярной реакции и ее производную, являющуюся функцией принадлежности для интенсивности циркулярной реакции. В блоке «Дефаззификация» с помощью метода центра тяжести определяется количественное значение для каждого выходного параметра. Оценка качества разработанной нечеткой модели, проведенная посредством вычисления коэффициента детерминации, показала, что разработанная математическая модель относится к разряду моделей хорошего качества.
Полученный результат в виде количественных оценок циркулярной реакции позволяет улучшить качество понимания психических процессов, происходящих при передаче панического состояния среди людей. Кроме того, это дает возможность усовершенствовать существующие и разрабатывать новые модели хаотичного поведения людей, которые предназначены для выработки эффективных решений в кризисных ситуациях, направленных на полное либо частичное предотвращение распространения массовой паники, приводящей к возникновению панического бегства, давки и появлению человеческих жертв.
Ключевые слова: массовая паника, механизм передачи панического состояния, нечеткая модель, функция принадлежности.
Fuzzy modeling the mechanism of transmitting panic state among people with various temperament species
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1079-1092A mass congestion of people always represents a potential danger and threat for their lives. In addition, every year in the world a very large number of people die because of the crush, the main cause of which is mass panic. Therefore, the study of the phenomenon of mass panic in view of her extreme social danger is an important scientific task. Available information, about the processes of her occurrence and spread refers to the category inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of the mechanism of transmitting panic state among people with various temperament species.
When developing an fuzzy model, it was assumed that panic, from the epicenter of the shocking stimulus, spreads among people according to the wave principle, passing at different frequencies through different environments (types of human temperament), and is determined by the speed and intensity of the circular reaction of the mechanism of transmitting panic state among people. Therefore, the developed fuzzy model, along with two inputs, has two outputs — the speed and intensity of the circular reaction. In the block «Fuzzyfication», the degrees of membership of the numerical values of the input parameters to fuzzy sets are calculated. The «Inference» block at the input receives degrees of belonging for each input parameter and at the output determines the resulting function of belonging the speed of the circular reaction and her derivative, which is a function of belonging for the intensity of the circular reaction. In the «Defuzzyfication» block, using the center of gravity method, a quantitative value is determined for each output parameter. The quality assessment of the developed fuzzy model, carried out by calculating of the determination coefficient, showed that the developed mathematical model belongs to the category of good quality models.
The result obtained in the form of quantitative assessments of the circular reaction makes it possible to improve the quality of understanding of the mental processes occurring during the transmission of the panic state among people. In addition, this makes it possible to improve existing and develop new models of chaotic humans behaviors. Which are designed to develop effective solutions in crisis situations, aimed at full or partial prevention of the spread of mass panic, leading to the emergence of panic flight and the appearance of human casualties.
-
Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.
Ключевые слова: тензорная математика, метод крупных частиц, гидромеханика, вычислительный эксперимент, проектное решение, поверочная задача.
Algorithmic construction of explicit numerical schemes and visualization of objects and processes in the computational experiment in fluid mechanics
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 767-774Views (last year): 1.The paper discusses the design and verification stages in the development of complex numerical algorithms to create direct computational experiments in fluid mechanics. The modeling of physical fields and nonstationary processes of continuum mechanics, it is desirable to rely on strict rules of construction the numerical objects and related computational algorithms. Synthesis of adaptive the numerical objects and effective arithmetic- logic operations can serve to optimize the whole computing tasks, provided strict following and compliance with the original of the laws of fluid mechanics. The possibility of using ternary logic enables to resolve some contradictions of functional and declarative programming in the implementation of purely applied problems of mechanics. Similar design decisions lead to new numerical schemes tensor mathematics to help optimize effectiveness and validate correctness the simulation results. The most important consequence is the possibility of using interactive graphical techniques for the visualization of intermediate results of modeling, as well as managed to influence the course of computing experiment under the supervision of engineers aerohydrodynamics– researchers.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"