Результаты поиска по 'экспертная база знаний':
Найдено статей: 5
  1. Подлипский О.К.
    Построение баз знаний группой экспертов
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 3-11

    Рассматриваются вопросы построения баз экспертных знаний для создания прикладных консультационных и обучающих системв медицине. Описывается опыт построения таких баз и систем. Предлагаются методы построения баз знаний группой экспертов.

    Podlipskii O.K.
    Construction of knowledge bases by a group of experts
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 3-11

    Questions of construction of expert knowledge bases for creation of applied consulting and training systems in medicine are considered. Experience of construction of such bases and systems is described. Methods of construction of knowledge bases by a group of experts are offered.

    Views (last year): 3. Citations: 3 (RSCI).
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1217-1219
  4. Суздальцев В.А., Суздальцев И.В., Тахавова Э.Г.
    Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408

    Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.

    Suzdaltsev V.A., Suzdaltsev I.V., Tarhavova E.G.
    Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408

    Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.

  5. Гуськов В.П., Гущанский Д.Е., Кулабухова Н.В., Абраамян С.А., Балян С.Г., Дегтярев А.Б., Богданов А.В.
    Интерактивный инструментарий для распределенных телемедицинских систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 521-527

    Для жителей удалённых районов часто может составлять проблему прохождение квалифицированного медицинского обследования. Доступный медицинский персонал может отсутствовать или не обладать экспертными знаниями достаточного уровня. Помочь в такой ситуации могут телемедицинские технологии. С одной стороны, такие технологии позволяют врачам высокой квалификации оказывать удалённые консультации, повышая тем самым качество постановки диагноза и составления плана лечения. С другой стороны, средства автоматизированного анализа результатов проведённых исследований, анамнеза и информации об аналогичных случаях помогают облегчить выполнение рутинных действий и оказать медицинскому персоналу поддержу в принятии решений.

    Создание телемедицинской системы для конкретной предметной области — это трудоёмкий процесс. Не достаточно подобать подходящих специалистов и заполнить базу знаний аналитического модуля. Необходимо также организовать всю инфраструктуру системы, удовлетворяя предъявляемые требования по надёжности, отказоустойчивости, защите персональных данных и так далее. Снизить трудоёмкость разработки телемедицинских комплексов может инструментарий, содержащий многократно используемые инфраструктурные элементы, общие для систем такого рода.

    В данной работе описан интерактивный инструментарий для создания распределённых телемедицинских систем. Приводится список требований, предъявляемый к получаемым системам, и архитектурные решения, позволяющие удовлетворить эти требования. В качестве примера применения созданного инструментария описывается кардиологическая телемедицинская система.

    Guskov V.P., Gushchanskiy D.E., Kulabukhova N.V., Abrahamyan S.A., Balyan S.G., Degtyarev A.B., Bogdanov A.V.
    An interactive tool for developing distributed telemedicine systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 521-527

    Getting a qualified medical examination can be difficult for people in remote areas because medical staff available can either be inaccessible or it might lack expert knowledge at proper level. Telemedicine technologies can help in such situations. On one hand, such technologies allow highly qualified doctors to consult remotely, thereby increasing the quality of diagnosis and plan treatment. On the other hand, computer-aided analysis of the research results, anamnesis and information on similar cases assist medical staff in their routine activities and decision-making.

    Creating telemedicine system for a particular domain is a laborious process. It’s not sufficient to pick proper medical experts and to fill the knowledge base of the analytical module. It’s also necessary to organize the entire infrastructure of the system to meet the requirements in terms of reliability, fault tolerance, protection of personal data and so on. Tools with reusable infrastructure elements, which are common to such systems, are able to decrease the amount of work needed for the development of telemedicine systems.

    An interactive tool for creating distributed telemedicine systems is described in the article. A list of requirements for the systems is presented; structural solutions for meeting the requirements are suggested. A composition of such elements applicable for distributed systems is described in the article. A cardiac telemedicine system is described as a foundation of the tool

    Views (last year): 3. Citations: 4 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"