All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Континуальные трансформирующиеся оболочки из тонких пластин
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 3-29Изучаются трансформирующиеся системы, собранные из трапециевидных пластин. При развертывании пакета пластинок образуется сетчатая оболочка с шестигранными ячейками. Доказывается, что при определенных соотношениях размеров граней в шестизвенниках появляются дополнительные внутренние степени свободы. Если же используются тонкие пластинки, то континуальная аппроксимация развернутой сети может интерпретироваться как оболочка с широким набором локальных кривизн. Строится кинематика континуальной модели методом подвижного репера Картана. Изучается механическое поведение континуальных сетей, если цилиндрические шарниры между пластинами выполнены из пластических материалов, обладающих памятью формы. Исследуются переходы оболочек из одной равновесной формы в другую. Показаны возможные практические применения континуальных сетей.
Ключевые слова: континуальные трансформирующиеся оболочки, репер Картана, пластические материалы, память формы, устойчивое равновесие, практическое применение.
Continuum deployable shells made of thin plates
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29Citations: 3 (RSCI).This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.
- Views (last year): 6.
- Views (last year): 20.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. I. Продольная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 605-620В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.
Ключевые слова: память MRAM, одноосная анизотропия, намагниченность, свободный слой, закрепленный слой, уравнение Ландау–Лифшица–Гильберта, переключение намагниченности.
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. I. Longitudinal anisotropy
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 605-620Views (last year): 2. Citations: 6 (RSCI).The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.
-
Моделирование пространственного сценария перехода к хаосу через разрушение тора в задаче с концентрационно-зависимой диффузией
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 9-31Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.
Ключевые слова: пространственный аналог сценария перехода к хаосу, разрушение тора, хемокон-векция, реакция нейтрализации, нелинейная диффузия, смешивающиеся жидкости.
Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 9-31In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. II. Перпендикулярная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 755-764В приближении однородной намагниченности построена математическая модель трехслойной ячейки памяти MRAM c осью анизотропии, расположенной перпендикулярно запоминающему ферромагнитному слою ячейки (перпендикулярная анизотропия). Предполагается, что первоначально намагниченность свободного слоя ячейки ориентирована вдоль оси анизотропии и соответствует состоянию «нуль». Одновременное мгновенное включение спин-поляризованного тока и магнитного поля воздействует на намагниченность свободного слоя и может перевести ее в противоположное положение, соответствующее состоянию «единица». Математическое описание эффекта основано на классическом векторном уравнении Ландау–Лифшица с диссипативным членом в форме Гильберта. В нашей модели учтены взаимодействия намагниченности с внешним магнитным полем и эффективными полями анизотропии и размагничивания, а также с током инжекции в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от управляющих параметров: величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Установлено, что в данной системе, в отличие от системы с продольной анизотропией, дополнительные состояния равновесия отсутствуют. Проведен анализ устойчивости основных состояний равновесия по первому приближению. Построены бифуркационные диаграммы, характеризующие типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно, методом Рунге–Кутты, построены траектории переключения. Найдены комбинации управляющих параметров, при которых переключение невозможно. Найдены области существования устойчивых и неустойчивых предельных циклов системы. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Проведено сравнение значений порогового тока в моделях с продольной и перпендикулярной анизотропией при нулевом магнитном поле и показано, что в модели с перпендикулярной анизотропией ток переключения почти на порядок ниже, чем в модели с продольной анизотропией.
Ключевые слова: память MRAM, одноосная анизотропия, намагниченность, свободный слой, закрепленный слой, уравнение Ландау–Лифшица–Гильберта, переключение намагниченности.
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. II. Perpendicular anisotropy
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 755-764Views (last year): 4. Citations: 1 (RSCI).The mathematical model of a three-layered Co/Cu/Co nanopillar for MRAM cell with one fixed and one free layer was investigated in the approximation of uniformly distributed magnetization. The anisotropy axis is perpendicular to the layers (so-called perpendicular anisotropy). Initially the magnetization of the free layer is oriented along the anisotropy axis in the position accepted to be “zero”. Simultaneous magnetic field and spinpolarized current engaging can reorient the magnetization to another position which in this context can be accepted as “one”. The mathematical description of the effect is based on the classical vector Landau–Lifshits equation with the dissipative term in the Gilbert form. In our model we took into account the interactions of the magnetization with an external magnetic field and such effective magnetic fields as an anisotropy and demagnetization ones. The influence of the spin-polarized injection current is taken into account in the form of Sloczewski–Berger term. The model was reduced to the set of three ordinary differential equations with the first integral. It was shown that at any current and field the dynamical system has two main equilibrium states on the axis coincident with anisotropy axis. It was ascertained that in contrast with the longitudinal-anisotropy model, in the model with perpendicular anisotropy there are no other equilibrium states. The stability analysis of the main equilibrium states was performed. The bifurcation diagrams characterizing the magnetization dynamics at different values of the control parameters were built. The classification of the phase portraits on the unit sphere was performed. The features of the dynamics at different values of the parameters were studied and the conditions of the magnetization reorientation were determined. The trajectories of magnetization switching were calculated numerically using the Runge–Kutta method. The parameter values at which limit cycles exist were determined. The threshold values for the switching current were found analytically. The threshold values for the structures with longitudinal and perpendicular anisotropy were compared. It was established that in the structure with the perpendicular anisotropy at zero field the switching current is an order lower than in the structure with the longitudinal one.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"