Результаты поиска по 'Einstein−Ehrenfest system':
Найдено статей: 3
  1. Levchenko E.A., Trifonov A.Y., Shapovalov A.V.
    Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219

    Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
    form.

    Views (last year): 4.
  2. Rezaev R.O., Trifonov A.Y., Shapovalov A.V.
    The EinsteinEhrenfest system of (0, M)-type and asymptotical solutions of the multidimensional nonlinear Fokker−Planck−Kolmogorov equation
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 151-160

    Semiclassical approximation formalism is developed for the multidimensional Fokker–Planck–Kolmogorov equation with non-local and nonlinear drift vector with respect to a small diffusion coefficient D, D→0, in the class of trajectory concentrated functions. The EinsteinEhrenfest system of (0, M)-type is obtained. A family of semiclassical solutions localized around a point driven by the EinsteinEhrenfest system accurate to O(D(M+1)/2) is found.

    Views (last year): 2.
  3. Levchenko E.A., Trifonov A.Y., Shapovalov A.V.
    Large-time asymptotic solutions of the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558

    Asymptotic solutions are constructed for the 1D nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical EinsteinEhrenfest system for the 2D Fisher–Kolmogorov–Petrovskii–Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.

    Views (last year): 1. Citations: 3 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"