All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219Views (last year): 4.Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
form. -
The Einstein−Ehrenfest system of (0, M)-type and asymptotical solutions of the multidimensional nonlinear Fokker−Planck−Kolmogorov equation
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 151-160Views (last year): 2.Semiclassical approximation formalism is developed for the multidimensional Fokker–Planck–Kolmogorov equation with non-local and nonlinear drift vector with respect to a small diffusion coefficient D, D→0, in the class of trajectory concentrated functions. The Einstein−Ehrenfest system of (0, M)-type is obtained. A family of semiclassical solutions localized around a point driven by the Einstein−Ehrenfest system accurate to O(D(M+1)/2) is found.
-
Large-time asymptotic solutions of the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558Views (last year): 1. Citations: 3 (RSCI).Asymptotic solutions are constructed for the 1D nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein–Ehrenfest system for the 2D Fisher–Kolmogorov–Petrovskii–Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"