All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The Einstein−Ehrenfest system of (0, M)-type and asymptotical solutions of the multidimensional nonlinear Fokker−Planck−Kolmogorov equation
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 151-160Views (last year): 2.Semiclassical approximation formalism is developed for the multidimensional Fokker–Planck–Kolmogorov equation with non-local and nonlinear drift vector with respect to a small diffusion coefficient D, D→0, in the class of trajectory concentrated functions. The Einstein−Ehrenfest system of (0, M)-type is obtained. A family of semiclassical solutions localized around a point driven by the Einstein−Ehrenfest system accurate to O(D(M+1)/2) is found.
-
Semiclassical asymptotics of nonlinear Fokker–Plank equation for distributions of asset returns
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 41-49Citations: 1 (RSCI).The semiclassical approximation method is applied for solution construction of the Fokker–Planck equation with quadratic nonlocal nonlinearity and various coefficients in models of asset returns estimation. Analitical expressions determining nonlinear evolution operator are obtained in semiclasical approximation.
-
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607Views (last year): 7.We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.
We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.
In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.
Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.
Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.
-
Stochastic formalization of the gas dynamic hierarchy
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.
Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.
The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.
-
Mathematical models for blood clot growth based on “advection–diffusion” and Fokker–Planck equations
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 271-283Views (last year): 2.The paper considers models of platelet thrombus formation in blood plasma flow in a cylindrical vessel, based on the “advection–diffusion” equation and the Fokker–Planck equation. The comparison of the results of calculations based on these models is given. Considered models show qualitatively similar behavior at the initial stage of thrombus formation. А detailed investigation of large clots requires models’ improvement.
-
Application of correlation adaptometry technique to sports and biomedical research
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 345-354Views (last year): 10.The paper outlines the approaches to mathematical modeling correlation adaptometry techniques widely used in biology and medicine. The analysis is based on models employed in descriptions of structured biological systems. It is assumed that the distribution density of the biological population numbers satisfies the equation of Kolmogorov-Fokker-Planck. Using this technique evaluated the effectiveness of treatment of patients with obesity. All patients depending on the obesity degree and the comorbidity nature were divided into three groups. Shows a decrease in weight of the correlation graph computed from the measured in the patients of the indicators that characterizes the effectiveness of the treatment for all studied groups. This technique was also used to assess the intensity of the training loads in academic rowing three age groups. It was shown that with the highest voltage worked with athletes for youth group. Also, using the technique of correlation adaptometry evaluated the effectiveness of the treatment of hormone replacement therapy in women. All the patients depending on the assigned drug were divided into four groups. In the standard analysis of the dynamics of mean values of indicators, it was shown that in the course of the treatment were observed normalization of the averages for all groups of patients. However, using the technique of correlation adaptometry it was found that during the first six months the weight of the correlation graph was decreasing and during the second six months the weight increased for all study groups. This indicates the excessive length of the annual course of hormone replacement therapy and the practicality of transition to a semiannual rate.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"