Результаты поиска по 'algorithm':
Найдено статей: 287
  1. We consider a model of spontaneous formation of a computational structure in the human brain for solving a given class of tasks in the process of performing a series of similar tasks. The model is based on a special definition of a numerical measure of the complexity of the solution algorithm. This measure has an informational property: the complexity of a computational structure consisting of two independent structures is equal to the sum of the complexities of these structures. Then the probability of spontaneous occurrence of the structure depends exponentially on the complexity of the structure. The exponential coefficient requires experimental determination for each type of problem. It may depend on the form of presentation of the source data and the procedure for issuing the result. This estimation method was applied to the results of a series of experiments that determined the strategy for solving a series of similar problems with a growing number of initial data. These experiments were described in previously published papers. Two main strategies were considered: sequential execution of the computational algorithm, or the use of parallel computing in those tasks where it is effective. These strategies differ in how calculations are performed. Using an estimate of the complexity of schemes, you can use the empirical probability of one of the strategies to calculate the probability of the other. The calculations performed showed a good match between the calculated and empirical probabilities. This confirms the hypothesis about the spontaneous formation of structures that solve the problem during the initial training of a person. The paper contains a brief description of experiments, detailed computational schemes and a strict definition of the complexity measure of computational structures and the conclusion of the dependence of the probability of structure formation on its complexity.

  2. Fedina A.A., Nurgaliev A.I., Skvortsova D.A.
    Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62

    In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points  $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.

    The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.

  3. Gladin E.L., Zainullina K.E.
    Ellipsoid method for convex stochastic optimization in small dimension
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147

    The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.

  4. The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable $x_\alpha^{}$, and in the second case, the integral of the unknown function with respect to the integration variable $\tau$, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation $O(h^2+\tau)$. In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable $x_\alpha^{}$, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in $h_\alpha^{}$ for a general parabolic type equation containing one-sided derivatives taking into account the sign of $r_\alpha^{}(x,t)$. To increase the boundary conditions of the third kind to the second order of accuracy in $h_\alpha^{}$, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the $L_2^{}$-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the $L_2^{}$-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.

  5. Meleshko E.V., Afanasenko T.S., Gadzhimirzayev Sh.M., Pashkov R.A., Gilya-Zetinov A.A., Tsybulko E.A., Zaitseva A.S., Khelvas A.V.
    Discrete simulation of the road restoration process
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1255-1268

    This work contains a description of the results of modeling the process of maintaining the readiness of a section of the road network under strikes of with specified parameters. A one-dimensional section of road up to 40 km long with a total number of strikes up to 100 during the work of the brigade is considered. A simulation model has been developed for carrying out work to maintain it in working condition by several groups (engineering teams) that are part of the engineering and road division. A multicopter-type unmanned aerial vehicle is used to search for the points of appearance of obstacles. Life cycle schemes of the main participants of the tactical scene have been developed and an event-driven model of the tactical scene has been built. The format of the event log generated as a result of simulation modeling of the process of maintaining a road section is proposed. To visualize the process of maintaining the readiness of a road section, it is proposed to use visualization in the cyclogram format.

    An XSL style has been developed for building a cyclogram based on an event log. As an algorithm for making a decision on the assignment of barriers to brigades, the simplest algorithm has been adopted, prescribing choosing the nearest barrier. A criterion describing the effectiveness of maintenance work on the site based on the assessment of the average speed of vehicles on the road section is proposed. Graphs of the dependence of the criterion value and the root-meansquare error depending on the length of the maintained section are plotted and an estimate is obtained for the maximum length of the road section maintained in a state of readiness with specified values for the selected quality indicator with specified characteristics of striking and performance of repair crews. The expediency of carrying out work to maintain readiness by several brigades that are part of the engineering and road division operating autonomously is shown.

    The influence of the speed of the unmanned aerial vehicle on the ability to maintain the readiness of the road section is analyzed. The speed range for from 10 to 70 km/h is considered, which corresponds to the technical capabilities of multicoptertype reconnaissance unmanned aerial vehicles. The simulation results can be used as part of a complex simulation model of an army offensive or defensive operation and for solving the problem of optimizing the assignment of tasks to maintain the readiness of road sections to engineering and road brigades. The proposed approach may be of interest for the development of military-oriented strategy games.

  6. Surov V.S.
    About one version of the nodal method of characteristics
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 29-44

    A variant of the inverse method of characteristics (IMH) is presented, in whose algorithm an additional fractional time step is introduced, which makes it possible to increase the accuracy of calculations due to a more accurate approximation of the characteristics. The calculation formulas of the modified method for the equations of the one-velocity model of a gas-liquid mixture are given, with the help of which one-dimensional and also flat test problems with self-similar solutions are calculated. When solving multidimensional problems, the original system of equations is split into a number of one-dimensional subsystems, for the calculation of which the inverse method of characteristics with a fractional time step is used. Using the proposed method, the following were calculated: the one-dimensional problem of the decay of an arbitrary discontinuity in a dispersed medium; a twodimensional problem of the interaction of a homogeneous gas-liquid flow with an obstacle with an attached shock wave, as well as a flow with a centered rarefaction wave. The results of numerical calculations of these problems are compared with self-similar solutions and their satisfactory agreement is noted. On the example of the Riemann problem with a shock wave, a comparison is made with a number of conservative, non-conservative, first and higher orders of accuracy schemes, from which, in particular, it follows that the presented calculation method, i. e. MIMC, quite competitive. Despite the fact that the application of MIMC requires many times more time than the original inverse method of characteristics (IMC), calculations can be carried out with an increased time step and, in some cases, more accurate results can be obtained. It is noted that the method with a fractional time step has advantages over the IMC in cases where the characteristics of the system are significantly curvilinear. For this reason, the use of MIMC, for example, for the Euler equations is inappropriate, since for the latter the characteristics within the time step differ little from straight lines.

  7. Pham C.T., Tran T.T., Dang H.P.
    Image noise removal method based on nonconvex total generalized variation and primal-dual algorithm
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 527-541

    In various applications, i. e., astronomical imaging, electron microscopy, and tomography, images are often damaged by Poisson noise. At the same time, the thermal motion leads to Gaussian noise. Therefore, in such applications, the image is usually corrupted by mixed Poisson – Gaussian noise.

    In this paper, we propose a novel method for recovering images corrupted by mixed Poisson – Gaussian noise. In the proposed method, we develop a total variation-based model connected with the nonconvex function and the total generalized variation regularization, which overcomes the staircase artifacts and maintains neat edges.

    Numerically, we employ the primal-dual method combined with the classical iteratively reweighted $l_1$ algorithm to solve our minimization problem. Experimental results are provided to demonstrate the superiority of our proposed model and algorithm for mixed Poisson – Gaussian removal to state-of-the-art numerical methods.

  8. Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

  9. Dorn Y.V., Shitikov O.M.
    Detecting Braess paradox in the stable dynamic model
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 35-51

    The work investigates the search for inefficient edges in the model of stable dynamics by Nestrov – de Palma (2003). For this purpose, we prove several general theorems about equilibrium properties, including the condition of equal costs for all used routes that can be extended to all paths involving edges from equilibrium routes. The study demonstrates that the standard problem formulation of finding edges whose removal reduces the cost of travel for all participants has no practical significance because the same edge can be both efficient and inefficient depending on the network’s load. In the work, we introduce the concept of an inefficient edge based on the sensitivity of total driver costs to the costs on the edge. The paper provides an algorithm for finding inefficient edges and presents the results of numerical experiments for the transportation network of the city of Anaheim.

  10. Morozov A.Y., Reviznikov D.L.
    Parametric identification of dynamic systems based on external interval estimates of phase variables
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314

    An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"