Результаты поиска по 'approximation':
Найдено статей: 200
  1. Borodachev L.V., Kolomiets D.O.
    Parallel calculations in the Darwin PIC-model
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 61-69

    The approach to parallel implementation of low-frequency PIC-algorithms is proposed, taking into account peculiarity of the nonradiative (Darwin) field approximation. Its advantages and specifics of adaptation to the base computer types for high performance calculations are discussed.

    Views (last year): 2.
  2. Shumixin A.G., Boyarshinova A.S.
    Algorithm of artificial neural network architecture and training set size configuration within approximation of dynamic object behavior
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 243-251

    The article presents an approach to configuration of an artificial neural network architecture and a training set size. Configuration is based on parameter minimization with constraints specifying neural network model quality criteria. The algorithm of artificial neural network architecture and training set size configuration is applied to dynamic object artificial neural network approximation.
    Series of computational experiments were performed. The method is applicable to construction of dynamic object models based on non-linear autocorrelation neural networks.

    Views (last year): 2. Citations: 8 (RSCI).
  3. Bakhvalov Y.N., Kopylov I.V.
    Training and assessment the generalization ability of interpolation methods
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1023-1031

    We investigate machine learning methods with a certain kind of decision rule. In particular, inverse-distance method of interpolation, method of interpolation by radial basis functions, the method of multidimensional interpolation and approximation, based on the theory of random functions, the last method of interpolation is kriging. This paper shows a method of rapid retraining “model” when adding new data to the existing ones. The term “model” means interpolating or approximating function constructed from the training data. This approach reduces the computational complexity of constructing an updated “model” from $O(n^3)$ to $O(n^2)$. We also investigate the possibility of a rapid assessment of generalizing opportunities “model” on the training set using the method of cross-validation leave-one-out cross-validation, eliminating the major drawback of this approach — the necessity to build a new “model” for each element which is removed from the training set.

    Views (last year): 7. Citations: 5 (RSCI).
  4. This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.

    Views (last year): 5.
  5. Demianov A.Y., Dinariev O.Y., Lisitsin D.A.
    Numerical simulation of frequency dependence of dielectric permittivity and electrical conductivity of saturated porous media
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 765-773

    This article represents numerical simulation technique for determining effective spectral electromagnetic properties (effective electrical conductivity and relative dielectric permittivity) of saturated porous media. Information about these properties is vastly applied during the interpretation of petrophysical exploration data of boreholes and studying of rock core samples. The main feature of the present paper consists in the fact, that it involves three-dimensional saturated digital rock models, which were constructed based on the combined data considering microscopic structure of the porous media and the information about capillary equilibrium of oil-water mixture in pores. Data considering microscopic structure of the model are obtained by means of X-ray microscopic tomography. Information about distributions of saturating fluids is based on hydrodynamic simulations with density functional technique. In order to determine electromagnetic properties of the numerical model time-domain Fourier transform of Maxwell equations is considered. In low frequency approximation the problem can be reduced to solving elliptic equation for the distribution of complex electric potential. Finite difference approximation is based on discretization of the model with homogeneous isotropic orthogonal grid. This discretization implies that each computational cell contains exclusively one medium: water, oil or rock. In order to obtain suitable numerical model the distributions of saturating components is segmented. Such kind of modification enables avoiding usage of heterogeneous grids and disregards influence on the results of simulations of the additional techniques, required in order to determine properties of cells, filled with mixture of media. Corresponding system of differential equations is solved by means of biconjugate gradient stabilized method with multigrid preconditioner. Based on the results of complex electric potential computations average values of electrical conductivity and relative dielectric permittivity is calculated. For the sake of simplicity, this paper considers exclusively simulations with no spectral dependence of conductivities and permittivities of model components. The results of numerical simulations of spectral dependence of effective characteristics of heterogeneously saturated porous media (electrical conductivity and relative dielectric permittivity) in broad range of frequencies and multiple water saturations are represented in figures and table. Efficiency of the presented approach for determining spectral electrical properties of saturated rocks is discussed in conclusion.

    Views (last year): 8.
  6. Aristova E.N., Astafurov G.O., Shilkov A.V.
    Calculation of radiation in shockwave layer of a space vehicle taking into account details of photon spectrum
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 579-594

    Calculations of radiation transport in the shockwave layer of a descent space vehicle cause essential difficulties due to complex multi-resonance dependence of the absorption macroscopic cross sections from the photon energy. The convergence of two approximate spectrum averaging methods to the results of exact pointwise spectrum calculations is investigated. The first one is the well known multigroup method, the second one is the Lebesgue averaging method belonging to methods of the reduction of calculation points by means of aggregation of spectral points which are characterized by equal absorption strength. It is shown that convergence of the Lebesgue averaging method is significantly faster than the multigroup approach as the number of groups is increased. The only 100–150 Lebesgue groups are required to achieve the accuracy of pointwise calculations even in the shock layer at upper atmosphere with sharp absorption lines. At the same time the number of calculations is reduced by more than four order. Series of calculations of the radiation distribution function in 2D shock layer around a sphere and a blunt cone were performed using the local flat layer approximation and the Lebesgue averaging method. It is shown that the shock wave radiation becomes more significant both in value of the energy flux incident on the body surface and in the rate of energy exchange with the gas-dynamic flow in the case of increasing of the vehicle’s size.

    Views (last year): 8. Citations: 1 (RSCI).
  7. Khazova Y.A.
    Traveling waves in a parabolic problem with a rotation on the circle
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716

    Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.

    A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.

    The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.

    Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.

    Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.

    Views (last year): 11. Citations: 5 (RSCI).
  8. Mikhailenko S.A., Sheremet M.A.
    Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207

    Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.

    Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.

    Views (last year): 20.
  9. Tarasyuk I.A., Kravchuk A.S.
    Estimation of natural frequencies of torsional vibrations of a composite nonlinearly viscoelastic shaft
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 421-430

    The article presents a method for linearization the effective function of material instantaneous deformation in order to generalize the torsional vibration equation to the case of nonlinearly deformable rheologically active shafts. It is considered layered and structurally heterogeneous, on average isotropic shafts made of nonlinearly viscoelastic components. The technique consists in determining the approximate shear modulus by minimizing the root-mean-square deviation in approximation of the effective diagram of instantaneous deformation.

    The method allows to estimate analytically values of natural frequencies of layered and structurally heterogeneous nonlinearly viscoelastic shaft. This makes it possible to significantly reduce resources in vibration analysis, as well as to track changes in values of natural frequencies with changing geometric, physico-mechanical and structural parameters of shafts, which is especially important at the initial stages of modeling and design. In addition, the paper shows that only a pronounced nonlinearity of the effective state equation has an effect on the natural frequencies, and in some cases the nonlinearity in determining the natural frequencies can be neglected.

    As equations of state of the composite material components, the article considers the equations of nonlinear heredity with instantaneous deformation functions in the form of the Prandtl’s bilinear diagrams. To homogenize the state equations of layered shafts, it is applied the Voigt’s hypothesis on the homogeneity of deformations and the Reuss’ hypothesis on the homogeneity of stresses in the volume of a composite body. Using these assumptions, effective secant and tangential shear moduli, proportionality limits, as well as creep and relaxation kernels of longitudinal, axial and transversely layered shafts are obtained. In addition, it is obtained the indicated effective characteristics of a structurally heterogeneous, on average isotropic shaft using the homogenization method previously proposed by the authors, based on the determination of the material deformation parameters by the rule of a mixture for the Voigt’s and the Reuss’ state equations.

    Views (last year): 27.
  10. Rukavishnikov V.A., Mosolapov A.O.
    Weighthed vector finite element method and its applications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86

    Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.

    For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.

    Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.

    Views (last year): 37.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"