Результаты поиска по 'boundary conditions problem':
Найдено статей: 75
  1. Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  2. The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.

    The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.

  3. Denisenko V.V., Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V.
    Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753

    The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.

  4. Maksimov F.A., Nigmatullin V.O.
    Hybrid grid method for external and internal gas dynamics
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565

    Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.

  5. Trifonova T.A., Sheremet M.A.
    Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191

    Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.

    Views (last year): 4. Citations: 3 (RSCI).
  6. Muratov M.V., Petrov I.B., Leviant V.B.
    The development of fracture mathematical models for numerical solution of exploration seismology problems with use of grid-characteristic method
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 911-925

    The article contains the description of developed mathematical models of fractures which can be used for numerical solution of exploration seismology problems with use of grid-characteristic method on unstructured triangular and tetrahedral meshes. The base of developed models is the concept of infinitely thin fracture. This fracture is represented by contact boundary. Such approach significantly reduces the consumption of computer resources by the absence of the mesh definition inside of fracture necessity. By the other side it lets state the fracture discretely in integration domain, therefore one can observe qualitative new effects which are not available to observe by use of effective models of fractures, actively used in computational seismic.

    The main target in the development of models have been getting the most accurate result. Developed models thet can receive the response close to the actual response of the existing fracture in geological environment. We considered fluid-filled fractures, glued and partially glued fractures, and also fractures with dynamical friction force. Fracture behavior determinated by the nature of condition on the border.

    Empty fracture was represented as free boundary condition. This condition give us opportunity for total reflection of wave fronts from fracture. Fluid-filling provided the condition for sliding on the border. Under this condition, there was a passage of longitudinal and total reflection of converted waves. For the real fractures, which has unequal distance between the borders has been proposed the model of partially glued fracture. At different points of the fracture's boundary were sat different conditions. Almost the same effect is achieved by using a fracture model of dynamic friction condition. But its disadvantage is the inabillity to specify the proportion of fracture's glued area due to the friction factor can take values from zero to infinity. The model of partially glued fracture is devoid of this disadvantage.

    Views (last year): 9.
  7. Burago N.G., Nikitin I.S.
    Algorithms of through calculation for damage processes
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666

    The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.

    Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.

    The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.

    Views (last year): 24.
  8. Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Views (last year): 13.
  9. Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  10. For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"