All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Analysis of mixed reality cross-device global localization algorithms based on point cloud registration
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 657-674State-of-the-art localization and mapping approaches for augmented (AR) and mixed (MR) reality devices are based on the extraction of local features from the camera. Along with this, modern AR/MR devices allow you to build a three-dimensional mesh of the surrounding space. However, the existing methods do not solve the problem of global device co-localization due to the use of different methods for extracting computer vision features. Using a space map from a 3D mesh, we can solve the problem of collaborative global localization of AR/MR devices. This approach is independent of the type of feature descriptors and localisation and mapping algorithms used onboard the AR/MR device. The mesh can be reduced to a point cloud, which consists of only the vertices of the mesh. We propose an approach for collaborative localization of AR/MR devices using point clouds that are independent of algorithms onboard the device. We have analyzed various point cloud registration algorithms and discussed their limitations for the problem of global co-localization of AR/MR devices indoors.
-
The development of an intelligent system for recognizing the volume and weight characteristics of cargo
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 437-450Industrial imaging or “machine vision” is currently a key technology in many industries as it can be used to optimize various processes. The purpose of this work is to create a software and hardware complex for measuring the overall and weight characteristics of cargo based on an intelligent system using neural network identification methods that allow one to overcome the technological limitations of similar complexes implemented on ultrasonic and infrared measuring sensors. The complex to be developed will measure cargo without restrictions on the volume and weight characteristics of cargo to be tariffed and sorted within the framework of the warehouse complexes. The system will include an intelligent computer program that determines the volume and weight characteristics of cargo using the machine vision technology and an experimental sample of the stand for measuring the volume and weight of cargo.
We analyzed the solutions to similar problems. We noted that the disadvantages of the studied methods are very high requirements for the location of the camera, as well as the need for manual operations when calculating the dimensions, which cannot be automated without significant modifications. In the course of the work, we investigated various methods of object recognition in images to carry out subject filtering by the presence of cargo and measure its overall dimensions. We obtained satisfactory results when using cameras that combine both an optical method of image capture and infrared sensors. As a result of the work, we developed a computer program allowing one to capture a continuous stream from Intel RealSense video cameras with subsequent extraction of a three-dimensional object from the designated area and to calculate the overall dimensions of the object. At this stage, we analyzed computer vision techniques; developed an algorithm to implement the task of automatic measurement of goods using special cameras and the software allowing one to obtain the overall dimensions of objects in automatic mode.
Upon completion of the work, this development can be used as a ready-made solution for transport companies, logistics centers, warehouses of large industrial and commercial enterprises.
-
A framework for medical image segmentation based on measuring diversity of pixel’s intensity utilizing interval approach
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1059-1066Segmentation of medical image is one of the most challenging tasks in analysis of medical image. It classifies the organs pixels or lesions from medical images background like MRI or CT scans, that is to provide critical information about the human organ’s volumes and shapes. In scientific imaging field, medical imaging is considered one of the most important topics due to the rapid and continuing progress in computerized medical image visualization, advances in analysis approaches and computer-aided diagnosis. Digital image processing becomes more important in healthcare field due to the growing use of direct digital imaging systems for medical diagnostics. Due to medical imaging techniques, approaches of image processing are now applicable in medicine. Generally, various transformations will be needed to extract image data. Also, a digital image can be considered an approximation of a real situation includes some uncertainty derived from the constraints on the process of vision. Since information on the level of uncertainty will influence an expert’s attitude. To address this challenge, we propose novel framework involving interval concept that consider a good tool for dealing with the uncertainty, In the proposed approach, the medical images are transformed into interval valued representation approach and entropies are defined for an image object and background. Then we determine a threshold for lower-bound image and for upper-bound image, and then calculate the mean value for the final output results. To demonstrate the effectiveness of the proposed framework, we evaluate it by using synthetic image and its ground truth. Experimental results showed how performance of the segmentation-based entropy threshold can be enhanced using proposed approach to overcome ambiguity.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"