Результаты поиска по 'distributed system':
Найдено статей: 118
  1. Yanbarisov R.M.
    Parallel embedded discrete fracture method for flows in fractured porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 735-745

    In this work, parallel method for solving single-phase flow problems in a fractured porous media is considered. Method is based on the representation of fractures by surfaces embedded into the computational mesh, and known as the embedded discrete fracture model. Porous medium and fractures are represented as two independent continua within the model framework. A distinctive feature of the considered approach is that fractures do not modify the computational grid, while an additional degree of freedom is introduced for each cell intersected by the fracture. Discretization of fluxes between fractures and porous medium continua uses the pre-calculated intersection characteristics of fracture surfaces with a three-dimensional computational grid. The discretization of fluxes inside a porous medium does not depend on flows between continua. This allows the model to be integrated into existing multiphase flow simulators in porous reservoirs, while accurately describing flow behaviour near fractures.

    Previously, the author proposed monotonic modifications of the model using nonlinear finite-volume schemes for the discretization of the fluxes inside the porous medium: a monotonic two-point scheme or a compact multi-point scheme with a discrete maximum principle. It was proved that the discrete solution of the obtained nonlinear problem preserves non-negativity or satisfies the discrete maximum principle, depending on the choice of the discretization scheme.

    This work is a continuation of previous studies. The previously proposed monotonic modification of the model was parallelized using the INMOST open-source software platform for parallel numerical modelling. We used such features of the INMOST as a balanced grid distribution among processors, scalable methods for solving sparse distributed systems of linear equations, and others. Parallel efficiency was demonstrated experimentally.

  2. Bogomolov S.V.
    Stochastic formalization of the gas dynamic hierarchy
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

    Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

    Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

    The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

  3. Kondratov D.V., Tatiana K.S., Popov V.S., Popova A.A.
    Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597

    The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.

  4. Minkevich I.G.
    On the kinetics of entropy of a system with discrete microscopic states
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1207-1236

    An isolated system, which possesses a discrete set of microscopic states, is considered. The system performs spontaneous random transitions between the microstates. Kinetic equations for the probabilities of the system staying in various microstates are formulated. A general dimensionless expression for entropy of such a system, which depends on the probability distribution, is considered. Two problems are stated: 1) to study the effect of possible unequal probabilities of different microstates, in particular, when the system is in its internal equilibrium, on the system entropy value, and 2) to study the kinetics of microstate probability distribution and entropy evolution of the system in nonequilibrium states. The kinetics for the rates of transitions between the microstates is assumed to be first-order. Two variants of the effects of possible nonequiprobability of the microstates are considered: i) the microstates form two subgroups the probabilities of which are similar within each subgroup but differ between the subgroups, and ii) the microstate probabilities vary arbitrarily around the point at which they are all equal. It is found that, under a fixed total number of microstates, the deviations of entropy from the value corresponding to the equiprobable microstate distribution are extremely small. The latter is a rigorous substantiation of the known hypothesis about the equiprobability of microstates under the thermodynamic equilibrium. On the other hand, based on several characteristic examples, it is shown that the structure of random transitions between the microstates exerts a considerable effect on the rate and mode of the establishment of the system internal equilibrium, on entropy time dependence and expression of the entropy production rate. Under definite schemes of these transitions, there are possibilities of fast and slow components in the transients and of the existence of transients in the form of damped oscillations. The condition of universality and stability of equilibrium microstate distribution is that for any pair of microstates, a sequence of transitions should exist, which provides the passage from one microstate to next, and, consequently, any microstate traps should be absent.

  5. Zhidkov E.P., Voloshina I.G., Polyakova R.V., Perepelkin E.E., Rossiyskaya N.S., Shavrina T.V., Yudin I.P.
    Computer modeling of magnet systems for physical setups
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 189-198

    This work gives results of numerical simulation of a superconducting magnetic focusing system. While modeling this system, special care was taken to achieve approximation accuracy over the condition u(∞)=0 by using Richardson method. The work presents the results of comparison of the magnetic field calculated distribution with measurements of the field performed on a modified magnet SP-40 of “MARUSYA” physical installation. This work also presents some results of numeric analysis of magnetic systems of “MARUSYA” physical installation with the purpose to study an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.

    Views (last year): 4. Citations: 2 (RSCI).
  6. Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  7. Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Views (last year): 11.
  8. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Views (last year): 40. Citations: 2 (RSCI).
  9. Madera A.G.
    Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038

    A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.

  10. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"