Результаты поиска по 'dynamic models':
Найдено статей: 320
  1. Yakovenko G.N.
    Reasons for nonlinearity: globality and noncommutativity
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 355-358

    A dynamic process modeled by ordinary differential equations is considered. If a nonautonomous system of ordinary differential equations has a general solution in a certain area, than the system can be simplified by nonautonomous substitution of variables: right parts turn to zeroes. Right parts of an autonomous system of ordinary differential equations in the neighborhood of nonsingular points can be linearized. A separable system where the right part contains linear combination of autonomous vector fields and factors are functions of independent variable is considered. If the fields commute than they can be linearized by general substitution of variables.

    Views (last year): 3.
  2. Poddubny V.V., Polikarpov A.A.
    Dissipative Stochastic Dynamic Model of Language Signs Evolution
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124

    We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.

    Views (last year): 1. Citations: 6 (RSCI).
  3. Malinetsky G.G., Faller D.S.
    Transition to chaos in the «reaction–diffusion» systems. The simplest models
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12

    The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.

    Views (last year): 6. Citations: 1 (RSCI).
  4. Gaiko V.A.
    Global bifurcation analysis of a rational Holling system
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545

    In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.

    Views (last year): 11.
  5. Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Views (last year): 42.
  6. Korchak A.B., Evdokimov A.V.
    Tool for integration of heterogeneous models and its application to loosely coupled sets of differential equations
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 127-136

    We develop the software tool for integration of dynamics models, which are inhomogeneous over mathematical properties and/or over requirements to the time step. The family of algorithms for the parallel computation of heterogeneous models with different time steps is offered. Analytical estimates and direct measurements of the error of these algorithms are made with reference to weakly coupled ODE sets. The advantage of the algorithms in the time cost as compared to accurate methods is shown.

    Views (last year): 1.
  7. Gaiko V.A.
    Global bifurcation analysis of a quartic predator–prey model
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 125-134

    We complete the global bifurcation analysis of a quartic predator–prey model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles.

    Views (last year): 5. Citations: 3 (RSCI).
  8. This paper considers the integrated approach to modeling the dynamics of genetic structure and the number of natural population. A set of dynamic models with different types of natural selection is used to describe a possible mechanism for the fixing of a genetic diversity in size of the litter in coastal, continental and farmed populations of arctic fox (Alopex lagopus, Canidae, Carnivora) observed now. The most interesting results have been obtained with the model of population consisting of two stages of development. At that with the frame of this model a dynamics of population genetic structure on genotypes was analyzed to consider different reproductive abilities and fitnesses of pups on the early stage of lifecycle which defined by the single diallelic gene. This model allows to receive a monomorphism for coastal populations of arctic fox, where food resources are practically constant. As well the model allows polymorphism with cyclical fluctuations in the number and frequency of the gene in the continental populations due to regular fluctuating of rodent number, the major component of its food. In farmed populations by selective selection carried out by farmers to increase the reproductive success, this gene is a pleiotropic one (i. e., determining the survival rate of individuals both early and late stages of their life cycle); so an application of appropriate model (with the selection of pleiotropic gene) allows to get an adequate rate of elimination for small litters allele.

    Views (last year): 7. Citations: 5 (RSCI).
  9. The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.

    Views (last year): 2. Citations: 6 (RSCI).
  10. Aksenov A.A.
    FlowVision: Industrial computational fluid dynamics
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20

    The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.

    The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.

    FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.

    Views (last year): 30. Citations: 8 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"