All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Reasons for nonlinearity: globality and noncommutativity
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 355-358Views (last year): 3.A dynamic process modeled by ordinary differential equations is considered. If a nonautonomous system of ordinary differential equations has a general solution in a certain area, than the system can be simplified by nonautonomous substitution of variables: right parts turn to zeroes. Right parts of an autonomous system of ordinary differential equations in the neighborhood of nonsingular points can be linearized. A separable system where the right part contains linear combination of autonomous vector fields and factors are functions of independent variable is considered. If the fields commute than they can be linearized by general substitution of variables.
-
Dissipative Stochastic Dynamic Model of Language Signs Evolution
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.
-
Transition to chaos in the «reaction–diffusion» systems. The simplest models
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12Views (last year): 6. Citations: 1 (RSCI).The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.
-
Image of the teacher. Ten years afterward
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 789-811Views (last year): 4.The work outlines the key ideas of Kurdyumov S.P., an outstanding specialist in applied mathematics, self-organization theory, transdisciplinary research. It considers the development of his scientific ideas in the last decade and formulates a set of open problems in synergetics which will probably stimulate the development of this approach. The article is an engaged version of the report made at Xth Kurdyumov readings held in Tver State University in 2015.
-
Global bifurcation analysis of a rational Holling system
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545Views (last year): 11.In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
Tool for integration of heterogeneous models and its application to loosely coupled sets of differential equations
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 127-136Views (last year): 1.We develop the software tool for integration of dynamics models, which are inhomogeneous over mathematical properties and/or over requirements to the time step. The family of algorithms for the parallel computation of heterogeneous models with different time steps is offered. Analytical estimates and direct measurements of the error of these algorithms are made with reference to weakly coupled ODE sets. The advantage of the algorithms in the time cost as compared to accurate methods is shown.
-
Transition from regular to chaotic dynamics for weakly bound rotating clusters
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 13-20Views (last year): 2.The measure of regular and chaotic component in dynamics of van-der-Waals clusters has been obtained by Monte Carlo method at different values of the total energy and the angular momentum. The nonmonotonic dependence of the volume of chaotic component on the angular momentum has been determined. The reason of transition to the chaotic regime has been revealed.
-
Wandering symmetries of the Lagrange's equations
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 13-17Views (last year): 4.The dynamic process can be in equal degree adequately prototyped by a family of Lagrange's systems. Symmetry group ‘wanders’ on this family: systems are transformed from one into another. In this work we show that under determined condition the first integral can be obtained by a simple calculations on some of such groups. The main purpose of the work is to show usefulness of wandering symmetry concept. The considered example: flat motion of a charged particle in magnetic field in presence of viscous friction. With the help of three wandering symmetry first integral is calculated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"