All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Dissipative Stochastic Dynamic Model of Language Signs Evolution
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.
-
A novel method of stylometry based on the statistic of numerals
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.
Keywords: text attribution, first significant digit of numerals.Views (last year): 10. -
Identification of the author of the text by segmentation method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1199-1210The paper describes a method for recognizing authors of literary texts by the proximity of fragments into which a separate text is divided to the standard of the author. The standard is the empirical frequency distribution of letter combinations, built on a training sample, which included expertly selected reliably known works of this author. A set of standards of different authors forms a library, within which the problem of identifying the author of an unknown text is solved. The proximity between texts is understood in the sense of the norm in L1 for the frequency vector of letter combinations, which is constructed for each fragment and for the text as a whole. The author of an unknown text is assigned the one whose standard is most often chosen as the closest for the set of fragments into which the text is divided. The length of the fragment is optimized based on the principle of the maximum difference in distances from fragments to standards in the problem of recognition of «friend–foe». The method was tested on the corpus of domestic and foreign (translated) authors. 1783 texts of 100 authors with a total volume of about 700 million characters were collected. In order to exclude the bias in the selection of authors, authors whose surnames began with the same letter were considered. In particular, for the letter L, the identification error was 12%. Along with a fairly high accuracy, this method has another important property: it allows you to estimate the probability that the standard of the author of the text in question is missing in the library. This probability can be estimated based on the results of the statistics of the nearest standards for small fragments of text. The paper also examines statistical digital portraits of writers: these are joint empirical distributions of the probability that a certain proportion of the text is identified at a given level of trust. The practical importance of these statistics is that the carriers of the corresponding distributions practically do not overlap for their own and other people’s standards, which makes it possible to recognize the reference distribution of letter combinations at a high level of confidence.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"