Результаты поиска по 'fuzzy model':
Найдено статей: 5
  1. Chukanov S.N., Pershina E.L.
    Formation of optimal control of nonlinear dynamic object based on Takagi–Sugeno model
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 51-59

    The algorithm of fuzzy control system essentially nonlinear dynamic object is considered in this article. For solving nonlinear optimal control problem is proposed to use the method of linear quadratic regulation (LQR) with fuzzy Takagi–Sugeno model. The algorithm can be used for the design of deterministic optimal control of nonlinear objects. The algorithm of optimal control for controlling the rotational motion of a space vehicle is proposed.

    Views (last year): 2.
  2. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  3. Suzdaltsev V.A., Suzdaltsev I.V., Tarhavova E.G.
    Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408

    Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.

  4. Kalachin S.V.
    Fuzzy modeling of human susceptibility to panic situations
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 203-218

    The study of the mechanism for the development of mass panic in view of its extreme importance and social danger is an important scientific task. Available information about the mechanism of her development is based mainly on the work of psychologists and belongs to the category of inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of a person's susceptibility to panic situations. As a result of the study, an fuzzy model was developed, consisting of blocks: “Fuzzyfication”, where the degree of belonging of the values of the input parameters to fuzzy sets is calculated; “Inference” where, based on the degree of belonging of the input parameters, the resulting function of belonging of the output value to an odd model is calculated; “Defuzzyfication”, where using the center of gravity method, the only quantitative value of the output variable characterizing a person's susceptibility to panic situations is determined Since the real quantitative values for linguistic variables mental properties of a person are unknown, then to assess the quality of the developed model, without endangering people, it is not possible. Therefore, the quality of the results of fuzzy modeling was estimated by the calculated value of the determination coefficient R2, which showed that the developed fuzzy model belongs to the category of good quality models $(R^2 = 0.93)$, which confirms the legitimacy of the assumptions made during her development. In accordance with to the results of the simulation, human susceptibility to panic situations for sanguinics and cholerics can be attributed to “increased” (0.88), and for phlegmatics and melancholics — to “moderate” (0.38). This means that cholerics and sanguinics can become epicenters of panic and the initiators of stampede, and phlegmatics and melancholics — obstacles to evacuation routes. What should be taken into account when developing effective evacuation measures, the main task of which is to quickly and safely evacuate people from adverse conditions. In the approved methods, the calculation of normative values of safety parameters is based on simplified analytical models of human flow movement, because a large number of factors have to be taken into account, some of which are quantitatively uncertain. The obtained result in the form of quantitative estimates of a person's susceptibility to panic situations will increase the accuracy of calculations.

  5. Kalachin S.V.
    Fuzzy modeling the mechanism of transmitting panic state among people with various temperament species
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1079-1092

    A mass congestion of people always represents a potential danger and threat for their lives. In addition, every year in the world a very large number of people die because of the crush, the main cause of which is mass panic. Therefore, the study of the phenomenon of mass panic in view of her extreme social danger is an important scientific task. Available information, about the processes of her occurrence and spread refers to the category inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of the mechanism of transmitting panic state among people with various temperament species.

    When developing an fuzzy model, it was assumed that panic, from the epicenter of the shocking stimulus, spreads among people according to the wave principle, passing at different frequencies through different environments (types of human temperament), and is determined by the speed and intensity of the circular reaction of the mechanism of transmitting panic state among people. Therefore, the developed fuzzy model, along with two inputs, has two outputs — the speed and intensity of the circular reaction. In the block «Fuzzyfication», the degrees of membership of the numerical values of the input parameters to fuzzy sets are calculated. The «Inference» block at the input receives degrees of belonging for each input parameter and at the output determines the resulting function of belonging the speed of the circular reaction and her derivative, which is a function of belonging for the intensity of the circular reaction. In the «Defuzzyfication» block, using the center of gravity method, a quantitative value is determined for each output parameter. The quality assessment of the developed fuzzy model, carried out by calculating of the determination coefficient, showed that the developed mathematical model belongs to the category of good quality models.

    The result obtained in the form of quantitative assessments of the circular reaction makes it possible to improve the quality of understanding of the mental processes occurring during the transmission of the panic state among people. In addition, this makes it possible to improve existing and develop new models of chaotic humans behaviors. Which are designed to develop effective solutions in crisis situations, aimed at full or partial prevention of the spread of mass panic, leading to the emergence of panic flight and the appearance of human casualties.

     

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"